Suppr超能文献

张量聚类在外积系数矩阵和独立成分分析分量矩阵上的应用,用于可靠的功能磁共振成像数据分解。

Tensor clustering on outer-product of coefficient and component matrices of independent component analysis for reliable functional magnetic resonance imaging data decomposition.

机构信息

School of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, China; Department of Psychiatry, Harvard Medical School, Harvard University, Boston, MA, USA.

Department of Radiology, Affiliated Zhongshan Hospital of Dalian University, Dalian, China.

出版信息

J Neurosci Methods. 2019 Sep 1;325:108359. doi: 10.1016/j.jneumeth.2019.108359. Epub 2019 Jul 12.

Abstract

BACKGROUND

Stability of spatial components is frequently used as a post-hoc selection criteria for choosing the dimensionality of an independent component analysis (ICA) of functional magnetic resonance imaging (fMRI) data. Although the stability of the ICA temporal courses differs from that of spatial components, temporal stability has not been considered during dimensionality decisions.

NEW METHOD

The current study aims to (1) develop an algorithm to incorporate temporal course stability into dimensionality selection and (2) test the impact of temporal course on the stability of the ICA decomposition of fMRI data via tensor clustering. Resting state fMRI data were analyzed with two popular ICA algorithms, InfomaxICA and FastICA, using our new method and results were compared with model order selection based on spatial or temporal criteria alone.

RESULTS

Hierarchical clustering indicated that the stability of the ICA decomposition incorporating spatiotemporal tensor information performed similarly when compared to current best practice. However, we found that component spatiotemporal stability and convergence of the model varied significantly with model order. Considering both may lead to methodological improvements for determining ICA model order. Selected components were also significantly associated with relevant behavioral variables. Comparison with Existing Method: The Kullback-Leibler information criterion algorithm suggests the optimal model order for group ICA is 40, compared to the proposed method with an optimal model order of 20.

CONCLUSION

The current study sheds new light on the importance of temporal course variability in ICA of fMRI data.

摘要

背景

空间成分的稳定性通常被用作功能磁共振成像 (fMRI) 数据独立成分分析 (ICA) 维度选择的事后选择标准。尽管 ICA 时程的稳定性与空间成分的稳定性不同,但在维度决策中并未考虑时程稳定性。

新方法

本研究旨在 (1) 开发一种将时程稳定性纳入维度选择的算法,以及 (2) 通过张量聚类测试时程对 fMRI 数据 ICA 分解稳定性的影响。使用我们的新方法对静息状态 fMRI 数据进行了两种流行的 ICA 算法(InfomaxICA 和 FastICA)的分析,并将结果与仅基于空间或时间标准的模型顺序选择进行了比较。

结果

层次聚类表明,与当前最佳实践相比,包含时空张量信息的 ICA 分解的稳定性表现相似。然而,我们发现组件的时空稳定性和模型的收敛性随模型顺序有很大差异。同时考虑这两个因素可能会导致确定 ICA 模型顺序的方法有所改进。选择的组件也与相关的行为变量显著相关。与现有方法的比较:Kullback-Leibler 信息准则算法表明,组 ICA 的最佳模型顺序为 40,而提出的方法的最佳模型顺序为 20。

结论

本研究揭示了时程可变性在 fMRI 数据 ICA 中的重要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验