A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, Leninskiy prospect 33, building 1, 119071, Moscow, Russian Federation.
M.V. Lomonosov Moscow State University, Department of Biophysics, Faculty of Biology, Leninskie gory 1, building 24, 119234, Moscow, Russian Federation.
Nat Commun. 2018 Sep 24;9(1):3869. doi: 10.1038/s41467-018-06195-0.
In cyanobacteria, high light photoactivates the orange carotenoid protein (OCP) that binds to antennae complexes, dissipating energy and preventing the destruction of the photosynthetic apparatus. At low light, OCP is efficiently deactivated by a poorly understood action of the dimeric fluorescence recovery protein (FRP). Here, we engineer FRP variants with defined oligomeric states and scrutinize their functional interaction with OCP. Complemented by disulfide trapping and chemical crosslinking, structural analysis in solution reveals the topology of metastable complexes of OCP and the FRP scaffold with different stoichiometries. Unable to tightly bind monomeric FRP, photoactivated OCP recruits dimeric FRP, which subsequently monomerizes giving 1:1 complexes. This could be facilitated by a transient OCP-2FRP-OCP complex formed via the two FRP head domains, significantly improving FRP efficiency at elevated OCP levels. By identifying key molecular interfaces, our findings may inspire the design of optically triggered systems transducing light signals into protein-protein interactions.
在蓝藻中,强光会激活与天线复合物结合的橙色类胡萝卜素蛋白(OCP),从而耗散能量,防止光合作用装置被破坏。在弱光下,OCP 会被二聚体荧光恢复蛋白(FRP)的一种作用所有效失活,这种作用目前还不太清楚。在这里,我们设计了具有明确寡聚状态的 FRP 变体,并仔细研究了它们与 OCP 的功能相互作用。通过二硫键捕获和化学交联进行补充,溶液中的结构分析揭示了具有不同化学计量的 OCP 和 FRP 支架的亚稳态复合物的拓扑结构。由于无法紧密结合单体 FRP,光激活的 OCP 招募二聚体 FRP,随后 FRP 单体化形成 1:1 复合物。这可能是通过两个 FRP 头部结构域形成的瞬态 OCP-2FRP-OCP 复合物来促进的,这显著提高了在高 OCP 水平下 FRP 的效率。通过确定关键的分子界面,我们的发现可能为设计将光信号转化为蛋白质-蛋白质相互作用的光触发系统提供启示。