Suppr超能文献

认知增强机器学习:利用有限数据进行更好的预测。

Cognition-Enhanced Machine Learning for Better Predictions with Limited Data.

机构信息

InfiniteTactics, LLC.

Department of Experimental Psychology, University of Groningen.

出版信息

Top Cogn Sci. 2022 Oct;14(4):739-755. doi: 10.1111/tops.12574. Epub 2021 Sep 16.

Abstract

The fields of machine learning (ML) and cognitive science have developed complementary approaches to computationally modeling human behavior. ML's primary concern is maximizing prediction accuracy; cognitive science's primary concern is explaining the underlying mechanisms. Cross-talk between these disciplines is limited, likely because the tasks and goals usually differ. The domain of e-learning and knowledge acquisition constitutes a fruitful intersection for the two fields' methodologies to be integrated because accurately tracking learning and forgetting over time and predicting future performance based on learning histories are central to developing effective, personalized learning tools. Here, we show how a state-of-the-art ML model can be enhanced by incorporating insights from a cognitive model of human memory. This was done by exploiting the predictive performance equation's (PPE) narrow but highly specialized domain knowledge with regard to the temporal dynamics of learning and forgetting. Specifically, the PPE was used to engineer timing-related input features for a gradient-boosted decision trees (GBDT) model. The resulting PPE-enhanced GBDT outperformed the default GBDT, especially under conditions in which limited data were available for training. Results suggest that integrating cognitive and ML models could be particularly productive if the available data are too high-dimensional to be explained by a cognitive model but not sufficiently large to effectively train a modern ML algorithm. Here, the cognitive model's insights pertaining to only one aspect of the data were enough to jump-start the ML model's ability to make predictions-a finding that holds promise for future explorations.

摘要

机器学习 (ML) 和认知科学领域已经开发出互补的方法来对人类行为进行计算建模。ML 的主要关注点是最大限度地提高预测准确性;认知科学的主要关注点是解释潜在的机制。这两个学科之间的交流是有限的,可能是因为任务和目标通常不同。电子学习和知识获取领域是这两个领域的方法相结合的一个富有成效的交汇点,因为准确地跟踪学习和遗忘随时间的变化,并根据学习历史预测未来表现,是开发有效、个性化学习工具的关键。在这里,我们展示了如何通过将人类记忆认知模型的见解纳入到最先进的 ML 模型中,来增强其性能。这是通过利用预测性能方程 (PPE) 在学习和遗忘的时间动态方面的狭窄但高度专业化的领域知识来实现的。具体来说,PPE 被用于为梯度提升决策树 (GBDT) 模型设计与时间相关的输入特征。由此产生的 PPE 增强型 GBDT 优于默认的 GBDT,尤其是在训练数据有限的情况下。结果表明,如果可用数据的维度太高,无法用认知模型解释,但又不足以有效地训练现代 ML 算法,则整合认知和 ML 模型可能特别有成效。在这里,认知模型的见解仅涉及数据的一个方面,这足以启动 ML 模型的预测能力——这一发现为未来的探索提供了希望。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff6d/9786646/387ca74b775a/TOPS-14-739-g002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验