Institut für Theoretische Physik, Westfälische Wilhelms-Universität Münster Wilhelm-Klemm-Strasse 9, 48149 Münster, Germany, and Center of Nonlinear Science (CeNoS), Westfälische Wilhelms-Universität Münster Corrensstrasse 2, 48149 Münster, Germany.
Phys Rev E. 2018 Aug;98(2-1):022608. doi: 10.1103/PhysRevE.98.022608.
The conserved Swift-Hohenberg equation (or phase-field-crystal [PFC] model) provides a simple microscopic description of the thermodynamic transition between fluid and crystalline states. Combining it with elements of the Toner-Tu theory for self-propelled particles, Menzel and Löwen [Phys. Rev. Lett. 110, 055702 (2013)PRLTAO0031-900710.1103/PhysRevLett.110.055702] obtained a model for crystallization (swarm formation) in active systems. Here, we study the occurrence of resting and traveling localized states, i.e., crystalline clusters, within the resulting active PFC model. Based on linear stability analyses and numerical continuation of the fully nonlinear states, we present a detailed analysis of the bifurcation structure of periodic and localized, resting and traveling states in a one-dimensional active PFC model. This allows us, for instance, to explore how the slanted homoclinic snaking of steady localized states found for the passive PFC model is amended by activity. A particular focus lies on the onset of motion, where we show that it occurs either through a drift-pitchfork or a drift-transcritical bifurcation. A corresponding general analytical criterion is derived.
保守的 Swift-Hohenberg 方程(或相场晶体 [PFC] 模型)为流体和晶体状态之间的热力学转变提供了一个简单的微观描述。Menzel 和 Löwen [Phys. Rev. Lett. 110, 055702 (2013)PRLTAO0031-900710.1103/PhysRevLett.110.055702] 将其与自推进粒子的 Toner-Tu 理论元素结合起来,获得了一个用于活性系统中结晶(团块形成)的模型。在这里,我们研究了活跃的 PFC 模型中静止和移动的局部化状态(即晶体团簇)的出现。基于线性稳定性分析和完全非线性状态的数值延续,我们对一维活跃 PFC 模型中周期性和局部化、静止和移动状态的分岔结构进行了详细分析。这使我们能够探索在被动 PFC 模型中发现的稳态局部化状态的倾斜同宿蛇形如何被活性所修正。特别关注的是运动的开始,我们展示了它是通过漂移叉分还是漂移超临界分岔来发生的。并推导出了相应的一般分析准则。