Ophaus Lukas, Knobloch Edgar, Gurevich Svetlana V, Thiele Uwe
Institut für Theoretische Physik, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Strasse 9, 48149 Münster, Germany.
Center of Nonlinear Science (CeNoS), Westfälische Wilhelms-Universität Münster, Corrensstrasse 2, 48149 Münster, Germany.
Phys Rev E. 2021 Mar;103(3-1):032601. doi: 10.1103/PhysRevE.103.032601.
The active phase-field-crystal (active PFC) model provides a simple microscopic mean field description of crystallization in active systems. It combines the PFC model (or conserved Swift-Hohenberg equation) of colloidal crystallization and aspects of the Toner-Tu theory for self-propelled particles. We employ the active PFC model to study the occurrence of localized and periodic active crystals in two spatial dimensions. Due to the activity, crystalline states can undergo a drift instability and start to travel while keeping their spatial structure. Based on linear stability analyses, time simulations, and numerical continuation of the fully nonlinear states, we present a detailed analysis of the bifurcation structure of resting and traveling states. We explore, for instance, how the slanted homoclinic snaking of steady localized states found for the passive PFC model is modified by activity. Morphological phase diagrams showing the regions of existence of various solution types are presented merging the results from all the analysis tools employed. We also study how activity influences the crystal structure with transitions from hexagons to rhombic and stripe patterns. This in-depth analysis of a simple PFC model for active crystals and swarm formation provides a clear general understanding of the observed multistability and associated hysteresis effects, and identifies thresholds for qualitative changes in behavior.
活性相场晶体(active PFC)模型为活性系统中的结晶提供了一种简单的微观平均场描述。它结合了胶体结晶的PFC模型(或守恒的Swift-Hohenberg方程)以及自推进粒子的Toner-Tu理论的一些方面。我们采用活性PFC模型来研究二维空间中局域化和周期性活性晶体的出现。由于活性,晶体状态会经历漂移不稳定性并开始移动,同时保持其空间结构。基于线性稳定性分析、时间模拟以及完全非线性状态的数值延拓,我们对静止态和移动态的分岔结构进行了详细分析。例如,我们探究了活性如何改变被动PFC模型中发现的稳态局域态的倾斜同宿蛇形现象。通过合并所使用的所有分析工具的结果,呈现了显示各种解类型存在区域的形态相图。我们还研究了活性如何通过从六边形到菱形和条纹图案的转变来影响晶体结构。对活性晶体和群体形成的简单PFC模型的这种深入分析,为观察到的多重稳定性和相关的滞后效应提供了清晰的总体理解,并确定了行为定性变化的阈值。