Suppr超能文献

SemGen:一种基于语义的生物模拟模型注释和组合工具。

SemGen: a tool for semantics-based annotation and composition of biosimulation models.

机构信息

Seattle Children's Research Institute, Center for Global Infectious Disease Research, Seattle, WA, USA.

Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA.

出版信息

Bioinformatics. 2019 May 1;35(9):1600-1602. doi: 10.1093/bioinformatics/bty829.

Abstract

SUMMARY

As the number and complexity of biosimulation models grows, so do demands for tools that can help users understand models and compose more comprehensive and accurate systems from existing models. SemGen is a tool for semantics-based annotation and composition of biosimulation models designed to address this demand. A key SemGen capability is to decompose and then integrate models across existing model exchange formats including SBML and CellML. To support this capability, we use semantic annotations to explicitly capture the underlying biological and physical meanings of the entities and processes that are modeled. SemGen leverages annotations to expose a model's biological and computational architecture and to help automate model composition.

AVAILABILITY AND IMPLEMENTATION

SemGen is freely available at https://github.com/SemBioProcess/SemGen.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

摘要

随着生物仿真模型数量和复杂度的增加,用户对于能够帮助他们理解模型并从现有模型中构建更全面、更准确系统的工具的需求也在不断增加。SemGen 是一个基于语义的注释和生物仿真模型组合工具,旨在满足这一需求。SemGen 的一个关键功能是分解并集成现有的模型交换格式(包括 SBML 和 CellML)中的模型。为了支持这一功能,我们使用语义注释来显式捕获所建模的实体和过程的潜在生物学和物理意义。SemGen 利用注释来揭示模型的生物学和计算架构,并帮助实现模型的自动组合。

可用性和实现

SemGen 可在 https://github.com/SemBioProcess/SemGen 上免费获取。

补充信息

补充数据可在 Bioinformatics 在线获取。

相似文献

7
Annotation and merging of SBML models with semanticSBML.使用 semanticSBML 进行 SBML 模型的注释和合并。
Bioinformatics. 2010 Feb 1;26(3):421-2. doi: 10.1093/bioinformatics/btp642. Epub 2009 Nov 17.
8
Using meshes for MeSH term enrichment and semantic analyses.使用网格进行 MeSH 术语富集和语义分析。
Bioinformatics. 2018 Nov 1;34(21):3766-3767. doi: 10.1093/bioinformatics/bty410.

引用本文的文献

8
Hierarchical semantic composition of biosimulation models using bond graphs.使用键合图对生物仿真模型进行分层语义组合。
PLoS Comput Biol. 2021 May 13;17(5):e1008859. doi: 10.1371/journal.pcbi.1008859. eCollection 2021 May.
9
Publishing reproducible dynamic kinetic models.发表可重现的动态动力学模型。
Brief Bioinform. 2021 May 20;22(3). doi: 10.1093/bib/bbaa152.

本文引用的文献

6
UniProt: a hub for protein information.通用蛋白质数据库(UniProt):蛋白质信息中心。
Nucleic Acids Res. 2015 Jan;43(Database issue):D204-12. doi: 10.1093/nar/gku989. Epub 2014 Oct 27.
8
Representing physiological processes and their participants with PhysioMaps.用生理图谱表示生理过程及其参与者。
J Biomed Semantics. 2013 Apr 15;4 Suppl 1(Suppl 1):S2. doi: 10.1186/2041-1480-4-S1-S2.
10
D³: Data-Driven Documents.D³:数据驱动文档。
IEEE Trans Vis Comput Graph. 2011 Dec;17(12):2301-9. doi: 10.1109/TVCG.2011.185.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验