Suppr超能文献

大规模自动化机器阅读发现新的致癌驱动机制。

Large-scale automated machine reading discovers new cancer-driving mechanisms.

机构信息

Department of Computer Science, University of Arizona, Tucson, AZ, USA.

School of Medicine, Oregon Health & Science University, Portland, OR, USA.

出版信息

Database (Oxford). 2018 Jan 1;2018:bay098. doi: 10.1093/database/bay098.

Abstract

PubMed, a repository and search engine for biomedical literature, now indexes >1 million articles each year. This exceeds the processing capacity of human domain experts, limiting our ability to truly understand many diseases. We present Reach, a system for automated, large-scale machine reading of biomedical papers that can extract mechanistic descriptions of biological processes with relatively high precision at high throughput. We demonstrate that combining the extracted pathway fragments with existing biological data analysis algorithms that rely on curated models helps identify and explain a large number of previously unidentified mutually exclusive altered signaling pathways in seven different cancer types. This work shows that combining human-curated 'big mechanisms' with extracted 'big data' can lead to a causal, predictive understanding of cellular processes and unlock important downstream applications.

摘要

PubMed 是一个生物医学文献的存储库和搜索引擎,现在每年索引超过 100 万篇文章。这超过了人类领域专家的处理能力,限制了我们真正理解许多疾病的能力。我们提出了 Reach,这是一个用于自动、大规模机器阅读生物医学论文的系统,可以以相对较高的精度和高通量提取生物过程的机制描述。我们证明,将提取的途径片段与依赖于精心设计模型的现有生物数据分析算法相结合,有助于识别和解释七种不同癌症类型中大量以前未被识别的相互排斥的改变的信号通路。这项工作表明,将人类精心设计的“大机制”与提取的“大数据”相结合,可以导致对细胞过程的因果预测理解,并解锁重要的下游应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c83/6156821/e57737064419/bay098f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验