Department of Medical and Surgical Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy.
IRCCS Istituto Delle Scienze Neurologiche di Bologna, UO Neuropsichiatria Dell'età Pediatrica, Bologna, Italy.
J Transl Med. 2024 Mar 4;22(1):238. doi: 10.1186/s12967-024-05041-w.
Mitochondria are cytoplasmic organelles having a fundamental role in the regulation of neural stem cell (NSC) fate during neural development and maintenance.During embryonic and adult neurogenesis, NSCs undergo a metabolic switch from glycolytic to oxidative phosphorylation with a rise in mitochondrial DNA (mtDNA) content, changes in mitochondria shape and size, and a physiological augmentation of mitochondrial reactive oxygen species which together drive NSCs to proliferate and differentiate. Genetic and epigenetic modifications of proteins involved in cellular differentiation (Mechanistic Target of Rapamycin), proliferation (Wingless-type), and hypoxia (Mitogen-activated protein kinase)-and all connected by the common key regulatory factor Hypoxia Inducible Factor-1A-are deemed to be responsible for the metabolic shift and, consequently, NSC fate in physiological and pathological conditions.Both primary mitochondrial dysfunction due to mutations in nuclear DNA or mtDNA or secondary mitochondrial dysfunction in oxidative phosphorylation (OXPHOS) metabolism, mitochondrial dynamics, and organelle interplay pathways can contribute to the development of neurodevelopmental or progressive neurodegenerative disorders.This review analyses the physiology and pathology of neural development starting from the available in vitro and in vivo models and highlights the current knowledge concerning key mitochondrial pathways involved in this process.
线粒体是细胞质细胞器,在神经发育和维持过程中对神经干细胞(NSC)命运的调节起着根本作用。在胚胎期和成年神经发生过程中,NSC 经历从糖酵解到氧化磷酸化的代谢转变,伴随着线粒体 DNA(mtDNA)含量的增加、线粒体形状和大小的变化以及线粒体活性氧的生理增加,这些共同促使 NSC 增殖和分化。参与细胞分化(雷帕霉素靶蛋白)、增殖(Wingless 型)和缺氧(丝裂原活化蛋白激酶)的蛋白质的遗传和表观遗传修饰——所有这些都通过共同的关键调节因子缺氧诱导因子-1A 连接在一起——被认为是导致代谢转变的原因,从而导致生理和病理条件下 NSC 的命运。由于核 DNA 或 mtDNA 突变引起的原发性线粒体功能障碍或氧化磷酸化(OXPHOS)代谢、线粒体动力学和细胞器相互作用途径的继发性线粒体功能障碍都可能导致神经发育或进行性神经退行性疾病的发展。本综述分析了从现有体外和体内模型开始的神经发育的生理学和病理学,并强调了当前关于涉及该过程的关键线粒体途径的知识。