Lee Seunghoon, Fan Chenghao, Movsesyan Artur, Bürger Johannes, Wendisch Fedja J, de S Menezes Leonardo, Maier Stefan A, Ren Haoran, Liedl Tim, Besteiro Lucas V, Govorov Alexander O, Cortés Emiliano
Chair in Hybrid Nanosystems, Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität München, 80539, München, Germany.
Department of Chemistry, Dong-A University, Busan, 49315, South Korea.
Angew Chem Int Ed Engl. 2024 Mar 11;63(11):e202319920. doi: 10.1002/anie.202319920. Epub 2024 Feb 2.
Due to their broken symmetry, chiral plasmonic nanostructures have unique optical properties and numerous applications. However, there is still a lack of comprehension regarding how chirality transfer occurs between circularly polarized light (CPL) and these structures. Here, we thoroughly investigate the plasmon-assisted growth of chiral nanoparticles from achiral Au nanocubes (AuNCs) via CPL without the involvement of any chiral molecule stimulators. We identify the structural chirality of our synthesized chiral plasmonic nanostructures using circular differential scattering (CDS) spectroscopy, which is correlated with scanning electron microscopy imaging at both the single-particle and ensemble levels. Theoretical simulations, including hot-electron surface maps, reveal that the plasmon-induced chirality transfer is mediated by the asymmetric distribution of hot electrons on achiral AuNCs under CPL excitation. Furthermore, we shed light on how this plasmon-induced chirality transfer can also be utilized for chiral growth in bimetallic systems, such as Ag or Pd on AuNCs. The results presented here uncover fundamental aspects of chiral light-matter interaction and have implications for the future design and optimization of chiral sensors and chiral catalysis, among others.
由于其对称性破缺,手性等离子体纳米结构具有独特的光学性质和众多应用。然而,对于圆偏振光(CPL)与这些结构之间的手性转移如何发生,仍缺乏理解。在此,我们通过CPL对非手性金纳米立方体(AuNCs)进行等离子体辅助生长手性纳米颗粒的深入研究,且不涉及任何手性分子刺激剂。我们使用圆二向色散射(CDS)光谱确定合成的手性等离子体纳米结构的结构手性,该光谱在单颗粒和整体水平上都与扫描电子显微镜成像相关。包括热电子表面图在内的理论模拟表明,在CPL激发下,等离子体诱导的手性转移是由非手性AuNCs上热电子的不对称分布介导的。此外,我们还阐明了这种等离子体诱导的手性转移如何也可用于双金属系统中的手性生长,例如在AuNCs上生长Ag或Pd。本文给出的结果揭示了手性光与物质相互作用的基本方面,并对手性传感器和手性催化等的未来设计和优化具有启示意义。