Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Alabama.
Department of Biomedical Engineering, School of Engineering, University of Alabama at Birmingham, Alabama.
J Appl Physiol (1985). 2019 Feb 1;126(2):341-353. doi: 10.1152/japplphysiol.00719.2018. Epub 2018 Sep 27.
Endurance exercise has been shown to be a positive regulator of skeletal muscle metabolic function. Changes in mitochondrial dynamics (fusion and fission) have been shown to influence mitochondrial oxidative capacity. We therefore tested whether genetic disruption of mitofusins (Mfns) affected exercise performance in adult skeletal muscle. We generated adult-inducible skeletal muscle-specific Mfn1 (iMS-Mfn1KO), Mfn2 (iMS-Mfn2KO), and Mfn1/2 (iMS-MfnDKO) knockout mice. We assessed exercise capacity by performing a treadmill time to exhaustion stress test before deletion and up to 8 wk after deletion. Analysis of either the iMS-Mfn1KO or the iMS-Mfn2KO did not reveal an effect on exercise capacity. However, analysis of iMS-MfnDKO animals revealed a progressive reduction in exercise performance. We measured individual electron transport chain (ETC) complex activity and observed a reduction in ETC activity in both the subsarcolemmal and intermyofibrillar mitochondrial fractions specifically for NADH dehydrogenase (complex I) and cytochrome- c oxidase (complex IV), which was associated with a decrease in ETC subunit expression for these complexes. We also tested whether voluntary exercise training would prevent the decrease in exercise capacity observed in iMS-MfnDKO animals ( n = 10/group). However, after 8 wk of training we did not observe any improvement in exercise capacity or ETC subunit parameters in iMS-MfnDKO animals. These data suggest that the decrease in exercise capacity observed in the iMS-MfnDKO animals is in part the result of impaired ETC subunit expression and ETC complex activity. Taken together, these results provide strong evidence that mitochondrial fusion in adult skeletal muscle is important for exercise performance. NEW & NOTEWORTHY This study is the first to utilize an adult-inducible skeletal muscle-specific knockout model for Mitofusin (Mfn)1 and Mfn2 to assess exercise capacity. Our findings reveal a progressive decrease in exercise performance with Mfn1 and Mfn2 deletion. The decrease in exercise capacity was accompanied by impaired oxidative phosphorylation specifically for complex I and complex IV. Furthermore, voluntary exercise training was unable to rescue the impairment, suggesting that normal fusion is essential for exercise-induced mitochondrial adaptations.
耐力运动已被证明是骨骼肌代谢功能的正向调节剂。线粒体动力学(融合和裂变)的变化已被证明会影响线粒体氧化能力。因此,我们测试了融合蛋白(Mfn)的基因缺失是否会影响成年骨骼肌的运动表现。我们生成了成年诱导型骨骼肌特异性 Mfn1(iMS-Mfn1KO)、Mfn2(iMS-Mfn2KO)和 Mfn1/2(iMS-MfnDKO)敲除小鼠。我们在删除前和删除后长达 8 周时通过进行跑步机时间到衰竭压力测试来评估运动能力。对 iMS-Mfn1KO 或 iMS-Mfn2KO 的分析并未显示出对运动能力的影响。然而,对 iMS-MfnDKO 动物的分析显示,运动表现逐渐下降。我们测量了单个电子传递链(ETC)复合物的活性,并观察到亚肌小节和肌纤维间线粒体部分的 NADH 脱氢酶(复合物 I)和细胞色素-c 氧化酶(复合物 IV)的 ETC 活性降低,这与这些复合物的 ETC 亚基表达减少有关。我们还测试了自愿运动训练是否会防止在 iMS-MfnDKO 动物中观察到的运动能力下降(每组 n = 10)。然而,经过 8 周的训练,我们没有观察到 iMS-MfnDKO 动物的运动能力或 ETC 亚基参数有任何改善。这些数据表明,在 iMS-MfnDKO 动物中观察到的运动能力下降部分是由于 ETC 亚基表达和 ETC 复合物活性受损所致。总的来说,这些结果提供了强有力的证据,证明成年骨骼肌中的线粒体融合对于运动表现很重要。新的和值得注意的是 这项研究首次利用成年诱导型骨骼肌特异性 Mfn1 和 Mfn2 敲除模型来评估运动能力。我们的发现显示,Mfn1 和 Mfn2 缺失后运动性能逐渐下降。运动能力的下降伴随着特定于复合物 I 和复合物 IV 的氧化磷酸化受损。此外,自愿运动训练无法挽救这种损伤,这表明正常融合对于运动引起的线粒体适应是必要的。