Suppr超能文献

可可壳固态发酵对次生代谢产物、抗氧化活性及脂肪酸的影响

Effect of the solid state fermentation of cocoa shell on the secondary metabolites, antioxidant activity, and fatty acids.

作者信息

Lessa Ozana Almeida, Reis Nadabe Dos Santos, Leite Selma Gomes Ferreira, Gutarra Melissa Limoeiro Estrada, Souza Alexilda Oliveira, Gualberto Simone Andrade, de Oliveira Julieta Rangel, Aguiar-Oliveira Elizama, Franco Marcelo

机构信息

1Post-Graduation Programm in Chemical and Biochemical Process Technology, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, 21949-900 Brazil.

2Post-Graduation Program in Food Engineering, Department of Basic and Instrumental Studies, State University of Southwest Bahia (UESB), Itapetinga, Bahia 45700-000 Brazil.

出版信息

Food Sci Biotechnol. 2017 Sep 21;27(1):107-113. doi: 10.1007/s10068-017-0196-x. eCollection 2018 Feb.

Abstract

During cocoa ( L.) processing, the accumulated cocoa shell can be used for bioconversion to obtain valuable compounds. Here, we evaluate the effect of solid-state fermentation of cacao flour with on secondary metabolite composition, phenol, carotenoid, anthocyanin, flavonol, and fatty acids contents, and antioxidant activity. We found that the total concentrations of anthocyanins and flavonols did not change significantly after fermentation and the phenolic compound and total carotenoid concentrations were higher. The fermentation process produced an increase in saponin concentration and antioxidant activity, as well as significant changes in the levels of oleic, linoleic, gamma-linolenic, and saturated fatty acids. Based on our findings, we propose that the reuse of food residues through solid state fermentation is viable and useful.

摘要

在可可(L.)加工过程中,积累的可可壳可用于生物转化以获得有价值的化合物。在此,我们评估了可可粉与[具体物质未给出]进行固态发酵对次生代谢物组成、酚类、类胡萝卜素、花青素、黄酮醇和脂肪酸含量以及抗氧化活性的影响。我们发现,发酵后花青素和黄酮醇的总浓度没有显著变化,而酚类化合物和总类胡萝卜素浓度更高。发酵过程使皂苷浓度和抗氧化活性增加,同时油酸、亚油酸、γ-亚麻酸和饱和脂肪酸水平也发生了显著变化。基于我们的研究结果,我们认为通过固态发酵对食品残渣进行再利用是可行且有用的。

相似文献

1
Effect of the solid state fermentation of cocoa shell on the secondary metabolites, antioxidant activity, and fatty acids.
Food Sci Biotechnol. 2017 Sep 21;27(1):107-113. doi: 10.1007/s10068-017-0196-x. eCollection 2018 Feb.
2
Changes in bioactive compounds during fermentation of cocoa () harvested in Amazonas-Peru.
Curr Res Food Sci. 2023 Apr 4;6:100494. doi: 10.1016/j.crfs.2023.100494. eCollection 2023.
3
Intravariety Diversity of Bioactive Compounds in Trinitario Cocoa Beans with Different Degrees of Fermentation.
J Agric Food Chem. 2019 Mar 20;67(11):3150-3158. doi: 10.1021/acs.jafc.8b06418. Epub 2019 Mar 7.
4
Impact of using cocoa bean shell powder as a substitute for wheat flour on some of chocolate cake properties.
Food Chem. 2022 Jul 1;381:132215. doi: 10.1016/j.foodchem.2022.132215. Epub 2022 Jan 22.
5
Optimization of lipase production by ATCC 10110 through solid-state fermentation using agro-industrial residue based on a univariate analysis.
Prep Biochem Biotechnol. 2022;52(3):325-330. doi: 10.1080/10826068.2021.1944203. Epub 2021 Jul 14.
7
Evaluation of the content of bioactive compounds in cocoa beans during the fermentation process.
J Food Sci Technol. 2021 May;58(5):1947-1957. doi: 10.1007/s13197-020-04706-w. Epub 2020 Aug 27.
9
Bioactive amines and phenolic compounds in cocoa beans are affected by fermentation.
Food Chem. 2017 Aug 1;228:484-490. doi: 10.1016/j.foodchem.2017.02.004. Epub 2017 Feb 5.

引用本文的文献

3
Potential Utilisation of Pod Husk Extract: Protective Capability Evaluation Against Pollution Models and Formulation into Niosomes.
Trop Life Sci Res. 2024 Jul;35(2):107-140. doi: 10.21315/tlsr2024.35.2.6. Epub 2024 Jul 31.
4
Chromatographic and spectroscopic methods for the detection of cocoa butter in cocoa and its derivatives: A review.
Heliyon. 2024 May 18;10(11):e31467. doi: 10.1016/j.heliyon.2024.e31467. eCollection 2024 Jun 15.
7
Development of the dairy products incorporated with co-product bioactive compounds-rich as an alternative ingredient in the food industry.
J Food Sci Technol. 2023 Jul;60(7):1981-1991. doi: 10.1007/s13197-023-05732-0. Epub 2023 Mar 25.
8
Uncovering the Biotechnological Importance of .
Foods. 2023 Mar 7;12(6):1124. doi: 10.3390/foods12061124.
9
Subcritical Water Extraction of : Process Optimization and Chemical Profile of the Extracts.
Molecules. 2023 Mar 2;28(5):2314. doi: 10.3390/molecules28052314.
10
Effects of Fermentation Process on the Antioxidant Capacity of Fruit Byproducts.
ACS Omega. 2023 Jan 23;8(5):4543-4553. doi: 10.1021/acsomega.2c07602. eCollection 2023 Feb 7.

本文引用的文献

1
Prickly palm cactus husk as a raw material for production of ligninolytic enzymes by .
Food Sci Biotechnol. 2016 Feb 29;25(1):205-211. doi: 10.1007/s10068-016-0031-9. eCollection 2016.
2
Antioxidant capacity of cocoa beans and chocolate assessed by FTIR.
Food Res Int. 2016 Dec;90:313-319. doi: 10.1016/j.foodres.2016.10.028. Epub 2016 Oct 17.
4
Evaluation of productivity and antioxidant profile of solid-state cultivated macrofungi Pleurotus albidus and Pycnoporus sanguineus.
Bioresour Technol. 2016 May;207:46-51. doi: 10.1016/j.biortech.2016.01.121. Epub 2016 Feb 4.
6
Penicillium roqueforti: a multifunctional cell factory of high value-added molecules.
J Appl Microbiol. 2015 Apr;118(4):781-91. doi: 10.1111/jam.12706. Epub 2014 Dec 29.
8
Review on in vivo and in vitro methods evaluation of antioxidant activity.
Saudi Pharm J. 2013 Apr;21(2):143-52. doi: 10.1016/j.jsps.2012.05.002. Epub 2012 Jun 15.
9
Antioxidants and human diseases.
Clin Chim Acta. 2014 Sep 25;436:332-47. doi: 10.1016/j.cca.2014.06.004. Epub 2014 Jun 13.
10
Sleep, its regulation and possible mechanisms of sleep disturbances.
Acta Physiol (Oxf). 2013 Aug;208(4):311-28. doi: 10.1111/apha.12134. Epub 2013 Jun 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验