Willerson Center for Cardiovascular Modeling and Simulation, Institute for Computational Engineering and Sciences and the Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA.
Department of Mechanical & Nuclear Engineering, Virginia Commonwealth University, Richmond, VA, USA.
Ann Biomed Eng. 2019 Jan;47(1):138-153. doi: 10.1007/s10439-018-02130-y. Epub 2018 Sep 27.
Pulmonary arterial hypertension (PAH) imposes pressure overload on the right ventricle (RV), leading to RV enlargement via the growth of cardiac myocytes and remodeling of the collagen fiber architecture. The effects of these alterations on the functional behavior of the right ventricular free wall (RVFW) and organ-level cardiac function remain largely unexplored. Computational heart models in the rat (RHMs) of the normal and hypertensive states can be quite valuable in simulating the effects of PAH on cardiac function to gain insights into the pathophysiology of underlying myocardium remodeling. We thus developed high-fidelity biventricular finite element RHMs for the normal and post-PAH hypertensive states using extensive experimental data collected from rat hearts. We then applied the RHM to investigate the transmural nature of RVFW remodeling and its connection to wall stress elevation under PAH. We found a strong correlation between the longitudinally-dominated fiber-level adaptation of the RVFW and the transmural alterations of relevant wall stress components. We further conducted several numerical experiments to gain new insights on how the RV responds both normally and in the post-PAH state. We found that the effect of pressure overload alone on the increased contractility of the RV is comparable to the effects of changes in the RV geometry and stiffness. Furthermore, our RHMs provided fresh perspectives on long-standing questions of the functional role of the interventricular septum in RV function. Specifically, we demonstrated that an inaccurate identification of the mechanical adaptation of the septum can lead to a significant underestimation of RVFW contractility in the post-PAH state. These findings show how integrated experimental-computational models can facilitate a more comprehensive understanding of the cardiac remodeling events during PAH.
肺动脉高压(PAH)会给右心室(RV)造成压力负荷,导致心肌细胞生长和胶原纤维结构重塑,从而使 RV 扩大。这些变化对右心室游离壁(RVFW)的功能行为和器官水平的心脏功能的影响在很大程度上仍未得到探索。正常和高血压状态下的大鼠计算心脏模型(RHMs)在模拟 PAH 对心脏功能的影响方面非常有价值,可以深入了解潜在心肌重塑的病理生理学。因此,我们使用从大鼠心脏收集的广泛实验数据,为正常和高血压后状态开发了高保真的双心室有限元 RHMs。然后,我们应用 RHM 研究 RVFW 重塑的跨壁性质及其与 PAH 下壁应力升高的关系。我们发现 RVFW 的纵向主导纤维适应性与相关壁应力分量的跨壁变化之间存在很强的相关性。我们还进行了几项数值实验,以深入了解 RV 在正常和高血压后状态下的反应方式。我们发现,仅压力负荷对 RV 收缩性的增加的影响与 RV 几何形状和刚度的变化的影响相当。此外,我们的 RHMs 为长期存在的关于室间隔在 RV 功能中的功能作用的问题提供了新的见解。具体来说,我们证明了对间隔机械适应性的不准确识别会导致在高血压后状态下对 RVFW 收缩性的显著低估。这些发现表明,集成的实验计算模型如何有助于更全面地了解 PAH 期间的心脏重塑事件。