Suppr超能文献

金纳米棒增强近红外神经刺激的理论研究。

Theoretical Study on Gold-Nanorod-Enhanced Near-Infrared Neural Stimulation.

机构信息

School of Engineering, Brown University, Providence, Rhode Island.

Department of Biomedical Engineering, Kyung Hee University, Yongin, South Korea.

出版信息

Biophys J. 2018 Oct 16;115(8):1481-1497. doi: 10.1016/j.bpj.2018.09.004. Epub 2018 Sep 13.

Abstract

Over the past decade, optical methods have emerged for modulating brain functions as an alternative to electrical stimulation. Among various optical techniques, infrared neural stimulation has been effective via a thermal mechanism enabling focused and noninvasive stimulation without any genetic manipulation, but it results in bulk heating of neural tissue. Recently, it has been shown that neural cells can be activated more efficiently by pulsed near-infrared (NIR) light delivered to gold nanorods (GNRs) near the neural cells. Despite its potential, however, the biophysical mechanism underlying this GNR-enhanced NIR stimulation has not been clearly explained yet. Here, we propose an integrative and quantitative model to elucidate the mechanism by modeling heat generated from interaction between NIR light and GNRs, the temperature-dependent ion channels (transient receptor potential vanilloid 1; TRPV1) in the neuronal membrane, and a heat-induced capacitive current through the membrane. Our results show that NIR pulses induce abrupt temperature elevation near the neuronal membrane and lead to both the TRPV1-channel and capacitive currents. Both current sources synergistically increase the membrane potential and elicit an action potential, and which mechanism is dominant depends on conditions such as the laser pulse duration and TRPV1 channel density. Although the TRPV1 mechanism dominates in most cases we tested, the capacitive current makes a larger contribution when a very short laser pulse is illuminated on neural cells with relatively low TRPV1 channel densities.

摘要

在过去的十年中,光学方法已经作为电刺激的替代方法出现,用于调节大脑功能。在各种光学技术中,红外神经刺激通过热机制有效,能够实现聚焦和非侵入性刺激,而无需任何遗传操作,但它会导致神经组织的整体加热。最近,已经表明,通过将脉冲近红外(NIR)光递送至靠近神经细胞的金纳米棒(GNR),可以更有效地激活神经细胞。然而,尽管有这种潜力,但这种 GNR 增强的 NIR 刺激的生物物理机制尚未得到明确解释。在这里,我们提出了一个综合和定量的模型,通过模拟 NIR 光与 GNR 之间相互作用产生的热量、神经元膜中温度依赖性离子通道(瞬时受体电位香草酸 1;TRPV1)以及通过膜的热诱导电容电流,来阐明这种机制。我们的结果表明,NIR 脉冲会在神经元膜附近引起突然的温度升高,并导致 TRPV1 通道和电容电流。这两个电流源协同增加膜电位并引发动作电位,并且哪种机制占主导地位取决于激光脉冲持续时间和 TRPV1 通道密度等条件。虽然 TRPV1 机制在我们测试的大多数情况下占主导地位,但当用相对较低 TRPV1 通道密度的神经细胞照射非常短的激光脉冲时,电容电流的贡献更大。

相似文献

1
Theoretical Study on Gold-Nanorod-Enhanced Near-Infrared Neural Stimulation.
Biophys J. 2018 Oct 16;115(8):1481-1497. doi: 10.1016/j.bpj.2018.09.004. Epub 2018 Sep 13.
2
3
Gold nanorod-assisted near-infrared light-mediated regulation of membrane ion channels activates apoptotic pathways.
Chem Commun (Camb). 2020 Jun 7;56(45):6118-6121. doi: 10.1039/d0cc01858a. Epub 2020 May 4.
4
Plasmonic activation of gold nanorods for remote stimulation of calcium signaling and protein expression in HEK 293T cells.
Biotechnol Bioeng. 2016 Oct;113(10):2228-40. doi: 10.1002/bit.25984. Epub 2016 Apr 8.
5
Gold-nanorod-assisted near-infrared stimulation of primary auditory neurons.
Adv Healthc Mater. 2014 Nov;3(11):1862-8. doi: 10.1002/adhm.201400027. Epub 2014 May 5.
6
Near Infrared Responsive Gold Nanorods Attenuate Osteoarthritis Progression by Targeting TRPV1.
Adv Sci (Weinh). 2024 Apr;11(16):e2307683. doi: 10.1002/advs.202307683. Epub 2024 Feb 15.
7
Gold Nanorod-assisted Optical Stimulation of Neuronal Cells.
J Vis Exp. 2015 Apr 27(98):52566. doi: 10.3791/52566.
8
Gold nanorod-assisted near-infrared stimulation of bullfrog sciatic nerve.
Lasers Med Sci. 2018 Dec;33(9):1907-1912. doi: 10.1007/s10103-018-2554-1. Epub 2018 Jun 4.
9
Thermosensitive Ion Channel Activation in Single Neuronal Cells by Using Surface-Engineered Plasmonic Nanoparticles.
Angew Chem Int Ed Engl. 2015 Sep 28;54(40):11725-9. doi: 10.1002/anie.201505534. Epub 2015 Aug 6.
10
Gold Nanorod-Melanin Hybrids for Enhanced and Prolonged Photoacoustic Imaging in the Near-Infrared-II Window.
ACS Appl Mater Interfaces. 2021 Apr 7;13(13):14974-14984. doi: 10.1021/acsami.1c00993. Epub 2021 Mar 24.

引用本文的文献

1
Intravitreally Injected Plasmonic Nanorods Activate Bipolar Cells with Patterned Near-Infrared Laser Projection.
ACS Nano. 2025 Apr 1;19(12):11823-11840. doi: 10.1021/acsnano.4c14061. Epub 2025 Mar 20.
2
Neural modulation with photothermally active nanomaterials.
Nat Rev Bioeng. 2023 Mar;1(3):193-207. doi: 10.1038/s44222-023-00022-y. Epub 2023 Jan 31.
3
Nanoparticle-based optical interfaces for retinal neuromodulation: a review.
Front Cell Neurosci. 2024 Mar 20;18:1360870. doi: 10.3389/fncel.2024.1360870. eCollection 2024.
4
Computational analysis of multichannel magnetothermal neural stimulation using magnetic resonator array.
Biomed Eng Lett. 2023 Feb 10;13(2):209-219. doi: 10.1007/s13534-023-00267-x. eCollection 2023 May.
5
Bioresorbable thin-film silicon diodes for the optoelectronic excitation and inhibition of neural activities.
Nat Biomed Eng. 2023 Apr;7(4):486-498. doi: 10.1038/s41551-022-00931-0. Epub 2022 Sep 5.
6
Optical neural stimulation using the thermoplasmonic effect of gold nano-hexagon.
Biomed Opt Express. 2021 Sep 7;12(10):6013-6023. doi: 10.1364/BOE.438593. eCollection 2021 Oct 1.
7
[Study on the temperature characteristics of fast capacitance in patch clamp experiments].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2021 Aug 25;38(4):695-702. doi: 10.7507/1001-5515.202007054.
8
Current Review of Optical Neural Interfaces for Clinical Applications.
Micromachines (Basel). 2021 Aug 2;12(8):925. doi: 10.3390/mi12080925.
9
Ultrasonic Retinal Neuromodulation and Acoustic Retinal Prosthesis.
Micromachines (Basel). 2020 Oct 13;11(10):929. doi: 10.3390/mi11100929.
10
Plasmonic Nanofactors as Switchable Devices to Promote or Inhibit Neuronal Activity and Function.
Nanomaterials (Basel). 2019 Jul 18;9(7):1029. doi: 10.3390/nano9071029.

本文引用的文献

1
Optocapacitive Generation of Action Potentials by Microsecond Laser Pulses of Nanojoule Energy.
Biophys J. 2018 Jan 23;114(2):283-288. doi: 10.1016/j.bpj.2017.11.018. Epub 2017 Dec 19.
2
Synergistic combination of near-infrared irradiation and targeted gold nanoheaters for enhanced photothermal neural stimulation.
Biomed Opt Express. 2016 Mar 31;7(4):1614-25. doi: 10.1364/BOE.7.001614. eCollection 2016 Apr 1.
3
Axonal model for temperature stimulation.
J Comput Neurosci. 2016 Oct;41(2):185-92. doi: 10.1007/s10827-016-0612-x. Epub 2016 Jun 24.
4
Electro-optical Neural Platform Integrated with Nanoplasmonic Inhibition Interface.
ACS Nano. 2016 Apr 26;10(4):4274-81. doi: 10.1021/acsnano.5b07747. Epub 2016 Mar 14.
5
Thermosensitive Ion Channel Activation in Single Neuronal Cells by Using Surface-Engineered Plasmonic Nanoparticles.
Angew Chem Int Ed Engl. 2015 Sep 28;54(40):11725-9. doi: 10.1002/anie.201505534. Epub 2015 Aug 6.
6
Infrared neural stimulation of human spinal nerve roots in vivo.
Neurophotonics. 2015 Jan;2(1):015007. doi: 10.1117/1.NPh.2.1.015007. Epub 2015 Feb 23.
7
Photosensitivity of neurons enabled by cell-targeted gold nanoparticles.
Neuron. 2015 Apr 8;86(1):207-17. doi: 10.1016/j.neuron.2015.02.033. Epub 2015 Mar 12.
8
9
Enhanced infrared neural stimulation using localized surface plasmon resonance of gold nanorods.
Small. 2014 Oct 15;10(19):3853-7. doi: 10.1002/smll.201400599. Epub 2014 Jun 27.
10
Gold-nanorod-assisted near-infrared stimulation of primary auditory neurons.
Adv Healthc Mater. 2014 Nov;3(11):1862-8. doi: 10.1002/adhm.201400027. Epub 2014 May 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验