Suppr超能文献

使用磁共振器阵列对多通道磁热神经刺激进行的计算分析。

Computational analysis of multichannel magnetothermal neural stimulation using magnetic resonator array.

作者信息

Sung Kyungmo, Jo Seonghoon, Lee Jaewook, Park Jeong Hoan, Park Young Hoon, Moon Jeongjoo, Kim Sung June, Jeong Joonsoo, Lee Jonghwan, Eom Kyungsik

机构信息

Department of Electronics Engineering, College of Engineering, Pusan National University, Busan, 46241 Republic of Korea.

Department of Electrical and Computer Engineering, National University of Singapore, Singapore, 117583 Singapore.

出版信息

Biomed Eng Lett. 2023 Feb 10;13(2):209-219. doi: 10.1007/s13534-023-00267-x. eCollection 2023 May.

Abstract

Heating nanoparticles with a magnetic field could facilitate selective remote control of neural activity in deep tissue. However, current magnetothermal stimulation approaches are limited to single-channel stimulation. Here, we investigated various designs for multichannel magnetothermal stimulation based on an array of resonant coils that are driven by a single loop coil. Using a tuning capacitor that allows resonant coils to resonate at the operating frequency, each coil's ON and OFF resonance can be controlled, enabling us to select stimulation channels. We found that smaller inner diameters of resonant coils produce more localized magnetic fields while larger coils produce magnetic fields over a longer distance. The constructed multichannel resonant coil arrays can provide a high enough magnetic field intensity to raise the temperature of nanoparticles by 8 °C when we apply 35.2 W into the loop coil that is spaced 1 mm from the target neurons. This multichannel stimulation using a simple resonant circuit approach would be useful for clinical applications of magnetothermal neural stimulation.

摘要

利用磁场加热纳米颗粒有助于对深部组织中的神经活动进行选择性远程控制。然而,目前的磁热刺激方法仅限于单通道刺激。在此,我们研究了基于由单个环形线圈驱动的一系列共振线圈的多通道磁热刺激的各种设计。通过使用一个调谐电容器,使共振线圈能够在工作频率下共振,每个线圈的开启和关闭共振都可以得到控制,从而使我们能够选择刺激通道。我们发现,共振线圈的内径越小,产生的磁场越局部化,而较大的线圈则能在更长的距离上产生磁场。当我们向距离目标神经元1毫米的环形线圈施加35.2瓦功率时,所构建的多通道共振线圈阵列能够提供足够高的磁场强度,使纳米颗粒的温度升高8°C。这种使用简单共振电路方法的多通道刺激对于磁热神经刺激的临床应用将是有用的。

相似文献

2
A 3-axis coil design for multichannel TMS arrays.一种用于多通道 TMS 阵列的 3 轴线圈设计。
Neuroimage. 2021 Jan 1;224:117355. doi: 10.1016/j.neuroimage.2020.117355. Epub 2020 Sep 9.

本文引用的文献

1
Optocapacitance: physical basis and its application.光电容:物理基础及其应用。
Biophys Rev. 2022 Apr 13;14(2):569-577. doi: 10.1007/s12551-022-00943-9. eCollection 2022 Apr.
3
Neural Recording and Modulation Technologies.神经记录与调制技术
Nat Rev Mater. 2017 Feb;2(2). doi: 10.1038/natrevmats.2016.93. Epub 2017 Jan 4.
4
Theoretical Study on Gold-Nanorod-Enhanced Near-Infrared Neural Stimulation.金纳米棒增强近红外神经刺激的理论研究。
Biophys J. 2018 Oct 16;115(8):1481-1497. doi: 10.1016/j.bpj.2018.09.004. Epub 2018 Sep 13.
6
Implantable microcoils for intracortical magnetic stimulation.可植入微线圈用于皮质内磁刺激。
Sci Adv. 2016 Dec 9;2(12):e1600889. doi: 10.1126/sciadv.1600889. eCollection 2016 Dec.
8
Infrared inhibition of embryonic hearts.红外抑制胚胎心脏。
J Biomed Opt. 2016 Jun 1;21(6):60505. doi: 10.1117/1.JBO.21.6.060505.
10
Wireless magnetothermal deep brain stimulation.无线磁热深脑刺激。
Science. 2015 Mar 27;347(6229):1477-80. doi: 10.1126/science.1261821. Epub 2015 Mar 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验