Université de Haute-Alsace, CNRS, IS2M, UMR 7361, Mulhouse, F-68100, France.
Université de Strasbourg, Strasbourg, F-67081, France.
Nat Commun. 2018 Sep 28;9(1):3995. doi: 10.1038/s41467-018-06494-6.
Cells have evolved multiple mechanisms to apprehend and adapt finely to their environment. Here we report a new cellular ability, which we term "curvotaxis" that enables the cells to respond to cell-scale curvature variations, a ubiquitous trait of cellular biotopes. We develop ultra-smooth sinusoidal surfaces presenting modulations of curvature in all directions, and monitor cell behavior on these topographic landscapes. We show that adherent cells avoid convex regions during their migration and position themselves in concave valleys. Live imaging combined with functional analysis shows that curvotaxis relies on a dynamic interplay between the nucleus and the cytoskeleton-the nucleus acting as a mechanical sensor that leads the migrating cell toward concave curvatures. Further analyses show that substratum curvature affects focal adhesions organization and dynamics, nuclear shape, and gene expression. Altogether, this work identifies curvotaxis as a new cellular guiding mechanism and promotes cell-scale curvature as an essential physical cue.
细胞已经进化出多种机制来精细感知和适应其环境。在这里,我们报告了一种新的细胞能力,我们称之为“趋曲率”,它使细胞能够对细胞尺度的曲率变化做出反应,而细胞尺度的曲率变化是细胞生物小生境的普遍特征。我们开发了超光滑的正弦形表面,呈现出各个方向的曲率调制,并监测细胞在这些地形景观上的行为。我们表明,在迁移过程中,贴壁细胞会避开凸面区域,并定位在凹面谷中。活细胞成像与功能分析相结合表明,趋曲率依赖于细胞核和细胞骨架之间的动态相互作用——细胞核作为一种机械传感器,引导迁移细胞朝向凹面曲率。进一步的分析表明,基底曲率会影响黏着斑的组织和动力学、核的形状和基因表达。总的来说,这项工作确定了趋曲率是一种新的细胞导向机制,并促进了细胞尺度曲率作为一种基本的物理线索。