Aix Marseille Univ, CNRS, ISM, Marseille, France.
APHM, Institute for Locomotion, Department of Orthopaedics and Traumatology, St Marguerite Hospital, Marseille, France.
Biomech Model Mechanobiol. 2024 Feb;23(1):315-333. doi: 10.1007/s10237-023-01777-4. Epub 2023 Oct 24.
In vitro experiments have shown that cell scale curvatures influence cell migration; cells avoid convex hills and settle in concave valleys. However, it is not known whether dynamic changes in curvature can guide cell migration. This study extends a previous in-silico model to explore the effects over time of changing the substrate curvature on cell migration guidance. By simulating a dynamic surface curvature using traveling wave patterns, we investigate the influence of wave height and speed, and find that long-distance cell migration guidance can be achieved on specific wave patterns. We propose a mechanistic explanation of what we call dynamic curvotaxis and highlight those cellular features that may be involved. Our results open a new area of study for understanding cell mobility in dynamic environments, from single-cell in vitro experiments to multi-cellular in vivo mechanisms.
体外实验表明细胞尺度的曲率会影响细胞迁移;细胞会避开凸丘并在凹谷中定居。然而,目前尚不清楚曲率的动态变化是否可以指导细胞迁移。本研究扩展了之前的计算模型,以探索随时间变化的基底曲率对细胞迁移导向的影响。通过使用行波模式模拟动态表面曲率,我们研究了波高和速度的影响,并发现特定的波型可以实现远距离的细胞迁移导向。我们提出了一种对我们称之为动态趋曲率的机制解释,并强调了可能涉及的细胞特征。我们的研究结果为理解动态环境中的细胞迁移开辟了一个新的研究领域,从单细胞的体外实验到多细胞的体内机制。