Suppr超能文献

泛癌症分析揭示 TGF-β 超家族信号转导介质中的高频遗传改变。

A Pan-Cancer Analysis Reveals High-Frequency Genetic Alterations in Mediators of Signaling by the TGF-β Superfamily.

机构信息

Department of Bioinformatics and Computational Biology, MD Anderson Cancer Center, Houston, TX 77030, USA.

Center for Translational Medicine, Department of Surgery, George Washington University, Washington, DC 20037, USA.

出版信息

Cell Syst. 2018 Oct 24;7(4):422-437.e7. doi: 10.1016/j.cels.2018.08.010. Epub 2018 Sep 26.

Abstract

We present an integromic analysis of gene alterations that modulate transforming growth factor β (TGF-β)-Smad-mediated signaling in 9,125 tumor samples across 33 cancer types in The Cancer Genome Atlas (TCGA). Focusing on genes that encode mediators and regulators of TGF-β signaling, we found at least one genomic alteration (mutation, homozygous deletion, or amplification) in 39% of samples, with highest frequencies in gastrointestinal cancers. We identified mutation hotspots in genes that encode TGF-β ligands (BMP5), receptors (TGFBR2, AVCR2A, and BMPR2), and Smads (SMAD2 and SMAD4). Alterations in the TGF-β superfamily correlated positively with expression of metastasis-associated genes and with decreased survival. Correlation analyses showed the contributions of mutation, amplification, deletion, DNA methylation, and miRNA expression to transcriptional activity of TGF-β signaling in each cancer type. This study provides a broad molecular perspective relevant for future functional and therapeutic studies of the diverse cancer pathways mediated by the TGF-β superfamily.

摘要

我们对 9125 个肿瘤样本进行了整合组学分析,这些样本来自 33 种癌症类型的癌症基因组图谱(TCGA),研究内容是调节转化生长因子β(TGF-β)-Smad 信号转导的基因改变。研究聚焦于编码 TGF-β信号转导的介质和调节剂的基因,我们发现 39%的样本中至少存在一种基因组改变(突变、纯合缺失或扩增),在胃肠道癌症中频率最高。我们在编码 TGF-β配体(BMP5)、受体(TGFBR2、AVCR2A 和 BMPR2)和 Smads(SMAD2 和 SMAD4)的基因中发现了突变热点。TGF-β 超家族的改变与转移相关基因的表达以及生存率降低呈正相关。相关性分析显示,在每种癌症类型中,突变、扩增、缺失、DNA 甲基化和 miRNA 表达对 TGF-β 信号转导的转录活性都有贡献。这项研究为 TGF-β 超家族介导的不同癌症途径的未来功能和治疗研究提供了广泛的分子视角。

相似文献

1
A Pan-Cancer Analysis Reveals High-Frequency Genetic Alterations in Mediators of Signaling by the TGF-β Superfamily.
Cell Syst. 2018 Oct 24;7(4):422-437.e7. doi: 10.1016/j.cels.2018.08.010. Epub 2018 Sep 26.
2
NSD2 inhibition suppresses metastasis in cervical cancer by promoting TGF-β/TGF-βRI/SMADs signaling.
Biochem Biophys Res Commun. 2019 Nov 12;519(3):489-496. doi: 10.1016/j.bbrc.2019.08.020. Epub 2019 Sep 14.
5
Transforming growth factor-β (TGF-β)-induced up-regulation of TGF-β receptors at the cell surface amplifies the TGF-β response.
J Biol Chem. 2019 May 24;294(21):8490-8504. doi: 10.1074/jbc.RA118.005763. Epub 2019 Apr 4.
6
Comprehensive Analysis of the Expression of TGF- Signaling Regulators and Prognosis in Human Esophageal Cancer.
Comput Math Methods Med. 2021 Oct 23;2021:1812227. doi: 10.1155/2021/1812227. eCollection 2021.
8
Liebig's law of the minimum in the TGF-β/SMAD pathway.
PLoS Comput Biol. 2024 May 16;20(5):e1012072. doi: 10.1371/journal.pcbi.1012072. eCollection 2024 May.
10
Transforming Growth Factor-β Promotes Liver Tumorigenesis in Mice via Up-regulation of Snail.
Gastroenterology. 2017 Nov;153(5):1378-1391.e6. doi: 10.1053/j.gastro.2017.07.014. Epub 2017 Jul 20.

引用本文的文献

1
Single-cell multi-omics as a window into the non-coding transcriptome.
Hereditas. 2025 Sep 16;162(1):179. doi: 10.1186/s41065-025-00573-7.
3
Modulation of the immune microenvironment using nanomaterials: a new strategy for tumor immunotherapy.
Front Immunol. 2025 Jul 2;16:1614640. doi: 10.3389/fimmu.2025.1614640. eCollection 2025.
4
Applications of CRISPR-Cas9 in mitigating cellular senescence and age-related disease progression.
Clin Exp Med. 2025 Jul 8;25(1):237. doi: 10.1007/s10238-025-01771-3.
6
Revisiting the TGFβ paradox: insights from HPV-driven cancer and the DNA damage response.
Nat Rev Cancer. 2025 May 19. doi: 10.1038/s41568-025-00819-6.
8
Microbial metabolite ammonia disrupts TGF-β signaling to promote colon cancer.
J Biol Chem. 2025 Apr 29;301(6):108559. doi: 10.1016/j.jbc.2025.108559.
9
New insights into biomarkers and risk stratification to predict hepatocellular cancer.
Mol Med. 2025 Apr 23;31(1):152. doi: 10.1186/s10020-025-01194-6.
10
High Mobility Group A1 Chromatin Keys: Unlocking the Genome During MPN Progression.
Int J Mol Sci. 2025 Feb 27;26(5):2125. doi: 10.3390/ijms26052125.

本文引用的文献

1
Scalable Open Science Approach for Mutation Calling of Tumor Exomes Using Multiple Genomic Pipelines.
Cell Syst. 2018 Mar 28;6(3):271-281.e7. doi: 10.1016/j.cels.2018.03.002.
2
The TGFβ superfamily in Lisbon: navigating through development and disease.
Development. 2017 Dec 15;144(24):4476-4480. doi: 10.1242/dev.159756.
4
Analysis of somatic microsatellite indels identifies driver events in human tumors.
Nat Biotechnol. 2017 Oct;35(10):951-959. doi: 10.1038/nbt.3966. Epub 2017 Sep 11.
5
Targeting TGF-β Signaling in Cancer.
Trends Cancer. 2017 Jan;3(1):56-71. doi: 10.1016/j.trecan.2016.11.008. Epub 2017 Jan 3.
6
Comprehensive and Integrative Genomic Characterization of Hepatocellular Carcinoma.
Cell. 2017 Jun 15;169(7):1327-1341.e23. doi: 10.1016/j.cell.2017.05.046.
7
Association of SMAD4 mutation with patient demographics, tumor characteristics, and clinical outcomes in colorectal cancer.
PLoS One. 2017 Mar 7;12(3):e0173345. doi: 10.1371/journal.pone.0173345. eCollection 2017.
8
TGF-β Family Signaling in Epithelial Differentiation and Epithelial-Mesenchymal Transition.
Cold Spring Harb Perspect Biol. 2018 Jan 2;10(1):a022194. doi: 10.1101/cshperspect.a022194.
9
TGF-β Family Signaling in Tumor Suppression and Cancer Progression.
Cold Spring Harb Perspect Biol. 2017 Dec 1;9(12):a022277. doi: 10.1101/cshperspect.a022277.
10
Targeting TGF-β Signaling for Therapeutic Gain.
Cold Spring Harb Perspect Biol. 2017 Oct 3;9(10):a022301. doi: 10.1101/cshperspect.a022301.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验