Suppr超能文献

使用无配对图像转换实现CT重建内核的供应商间协调统一。

Inter-vendor harmonization of CT reconstruction kernels using unpaired image translation.

作者信息

Krishnan Aravind R, Xu Kaiwen, Li Thomas, Gao Chenyu, Remedios Lucas W, Kanakaraj Praitayini, Lee Ho Hin, Bao Shunxing, Sandler Kim L, Maldonado Fabien, Išgum Ivana, Landman Bennett A

机构信息

Department of Electrical and Computer Engineering, Vanderbilt University, TN, USA.

Department of Computer Science, Vanderbilt University, Nashville, TN, USA.

出版信息

Proc SPIE Int Soc Opt Eng. 2024 Feb;12926. doi: 10.1117/12.3006608. Epub 2024 Apr 2.

Abstract

The reconstruction kernel in computed tomography (CT) generation determines the texture of the image. Consistency in reconstruction kernels is important as the underlying CT texture can impact measurements during quantitative image analysis. Harmonization (i.e., kernel conversion) minimizes differences in measurements due to inconsistent reconstruction kernels. Existing methods investigate harmonization of CT scans in single or multiple manufacturers. However, these methods require paired scans of hard and soft reconstruction kernels that are spatially and anatomically aligned. Additionally, a large number of models need to be trained across different kernel pairs within manufacturers. In this study, we adopt an unpaired image translation approach to investigate harmonization between and across reconstruction kernels from different manufacturers by constructing a multipath cycle generative adversarial network (GAN). We use hard and soft reconstruction kernels from the Siemens and GE vendors from the National Lung Screening Trial dataset. We use 50 scans from each reconstruction kernel and train a multipath cycle GAN. To evaluate the effect of harmonization on the reconstruction kernels, we harmonize 50 scans each from Siemens hard kernel, GE soft kernel and GE hard kernel to a reference Siemens soft kernel (B30f) and evaluate percent emphysema. We fit a linear model by considering the age, smoking status, sex and vendor and perform an analysis of variance (ANOVA) on the emphysema scores. Our approach minimizes differences in emphysema measurement and highlights the impact of age, sex, smoking status and vendor on emphysema quantification.

摘要

计算机断层扫描(CT)生成中的重建内核决定了图像的纹理。重建内核的一致性很重要,因为潜在的CT纹理会影响定量图像分析过程中的测量。归一化(即内核转换)可最大限度地减少由于重建内核不一致而导致的测量差异。现有方法研究单个或多个制造商提供的CT扫描的归一化。然而,这些方法需要对硬重建内核和软重建内核进行空间和解剖学对齐的配对扫描。此外,需要在制造商内部的不同内核对上训练大量模型。在本研究中,我们采用无配对图像翻译方法,通过构建多路径循环生成对抗网络(GAN)来研究不同制造商的重建内核之间以及跨重建内核的归一化。我们使用来自国家肺癌筛查试验数据集的西门子和通用电气供应商的硬重建内核和软重建内核。我们从每个重建内核中选取50次扫描,并训练一个多路径循环GAN。为了评估归一化对重建内核的影响,我们将来自西门子硬内核、通用电气软内核和通用电气硬内核的各50次扫描归一化为参考西门子软内核(B30f),并评估肺气肿百分比。我们通过考虑年龄、吸烟状况、性别和供应商来拟合线性模型,并对肺气肿评分进行方差分析(ANOVA)。我们的方法最大限度地减少了肺气肿测量中的差异,并突出了年龄、性别、吸烟状况和供应商对肺气肿量化的影响。

相似文献

本文引用的文献

1
Harmonizing CT Images via Physics-based Deep Neural Networks.通过基于物理的深度神经网络实现CT图像的协调
Proc SPIE Int Soc Opt Eng. 2023 Feb;12463. doi: 10.1117/12.2654215. Epub 2023 Apr 7.
7
Generative Adversarial Networks: A Primer for Radiologists.生成对抗网络:放射科医生入门指南。
Radiographics. 2021 May-Jun;41(3):840-857. doi: 10.1148/rg.2021200151. Epub 2021 Apr 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验