Suppr超能文献

联合弱监督深度学习在乳腺超声图像中肿块的定位和分类。

Joint Weakly and Semi-Supervised Deep Learning for Localization and Classification of Masses in Breast Ultrasound Images.

出版信息

IEEE Trans Med Imaging. 2019 Mar;38(3):762-774. doi: 10.1109/TMI.2018.2872031. Epub 2018 Sep 24.

Abstract

We propose a framework for localization and classification of masses in breast ultrasound images. We have experimentally found that training convolutional neural network-based mass detectors with large, weakly annotated datasets presents a non-trivial problem, while overfitting may occur with those trained with small, strongly annotated datasets. To overcome these problems, we use a weakly annotated dataset together with a smaller strongly annotated dataset in a hybrid manner. We propose a systematic weakly and semi-supervised training scenario with appropriate training loss selection. Experimental results show that the proposed method can successfully localize and classify masses with less annotation effort. The results trained with only 10 strongly annotated images along with weakly annotated images were comparable to results trained from 800 strongly annotated images, with the 95% confidence interval (CI) of difference -3%-5%, in terms of the correct localization (CorLoc) measure, which is the ratio of images with intersection over union with ground truth higher than 0.5. With the same number of strongly annotated images, additional weakly annotated images can be incorporated to give a 4.5% point increase in CorLoc, from 80% to 84.50% (with 95% CIs 76%-83.75% and 81%-88%). The effects of different algorithmic details and varied amount of data are presented through ablative analysis.

摘要

我们提出了一种用于乳腺超声图像中肿块定位和分类的框架。我们的实验发现,使用大型、弱注释数据集训练基于卷积神经网络的肿块检测器存在一个非平凡的问题,而使用小型、强注释数据集训练可能会出现过拟合的情况。为了克服这些问题,我们以混合方式使用弱注释数据集和较小的强注释数据集。我们提出了一种系统的弱监督和半监督训练方案,并选择了适当的训练损失。实验结果表明,该方法可以用较少的注释工作量成功地定位和分类肿块。仅使用 10 张强注释图像和弱注释图像训练的结果与使用 800 张强注释图像训练的结果相当,差异的 95%置信区间(CI)为-3%至-5%,正确定位(CorLoc)指标为大于 0.5 的交并比(IoU)的图像比例。使用相同数量的强注释图像,可以额外添加弱注释图像,使 CorLoc 提高 4.5 个百分点,从 80%提高到 84.50%(95%CI 为 76%-83.75%和 81%-88%)。通过消融分析展示了不同算法细节和不同数量数据的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验