Suppr超能文献

用于利用高通量基因表达数据选择潜在有效靶向抗癌药物组合的肿瘤盒生物信息学平台

Oncobox Bioinformatical Platform for Selecting Potentially Effective Combinations of Target Cancer Drugs Using High-Throughput Gene Expression Data.

作者信息

Sorokin Maxim, Kholodenko Roman, Suntsova Maria, Malakhova Galina, Garazha Andrew, Kholodenko Irina, Poddubskaya Elena, Lantsov Dmitriy, Stilidi Ivan, Arhiri Petr, Osipov Andreyan, Buzdin Anton

机构信息

National Research Centre "Kurchatov Institute", Centre for Convergence of Nano-, Bio-, Information and Cognitive Sciences and Technologies, 1 Akademika Kurchatova pl., Moscow 123182, Russia.

Laboratory of Clinical and Genomic Bioinformatics, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow 119991, Russia.

出版信息

Cancers (Basel). 2018 Sep 29;10(10):365. doi: 10.3390/cancers10100365.

Abstract

Sequential courses of anticancer target therapy lead to selection of drug-resistant cells, which results in continuous decrease of clinical response. Here we present a new approach for predicting effective combinations of target drugs, which act in a synergistic manner. Synergistic combinations of drugs may prevent or postpone acquired resistance, thus increasing treatment efficiency. We cultured human ovarian carcinoma SKOV-3 and neuroblastoma NGP-127 cancer cell lines in the presence of Tyrosine Kinase Inhibitors (Pazopanib, Sorafenib, and Sunitinib) and Rapalogues (Temsirolimus and Everolimus) for four months and obtained cell lines demonstrating increased drug resistance. We investigated gene expression profiles of intact and resistant cells by microarrays and analyzed alterations in 378 cancer-related signaling pathways using the bioinformatical platform Oncobox. This revealed numerous pathways linked with development of drug resistant phenotypes. Our approach is based on targeting proteins involved in as many as possible signaling pathways upregulated in resistant cells. We tested 13 combinations of drugs and/or selective inhibitors predicted by Oncobox and 10 random combinations. Synergy scores for Oncobox predictions were significantly higher than for randomly selected drug combinations. Thus, the proposed approach significantly outperforms random selection of drugs and can be adopted to enhance discovery of new synergistic combinations of anticancer target drugs.

摘要

连续进行的抗癌靶向治疗会导致耐药细胞的产生,从而使临床反应持续下降。在此,我们提出一种预测具有协同作用的靶向药物有效组合的新方法。药物的协同组合可能预防或延缓获得性耐药,从而提高治疗效果。我们在酪氨酸激酶抑制剂(帕唑帕尼、索拉非尼和舒尼替尼)和雷帕霉素类似物(替西罗莫司和依维莫司)存在的情况下,对人卵巢癌细胞系SKOV - 3和神经母细胞瘤细胞系NGP - 127进行了四个月的培养,获得了耐药性增强的细胞系。我们通过微阵列研究了完整细胞和耐药细胞的基因表达谱,并使用生物信息学平台Oncobox分析了378条癌症相关信号通路的变化。这揭示了许多与耐药表型发展相关的信号通路。我们的方法基于靶向参与耐药细胞中上调的尽可能多的信号通路的蛋白质。我们测试了Oncobox预测的13种药物和/或选择性抑制剂组合以及10种随机组合。Oncobox预测的协同评分显著高于随机选择的药物组合。因此,所提出的方法明显优于随机选择药物,可用于加强发现新的抗癌靶向药物协同组合。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b243/6209915/069a74bbb889/cancers-10-00365-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验