Suppr超能文献

在拟南芥和番茄中表达葡萄增强了对白粉病和渗透胁迫的抗性,但增强了对的敏感性。

Expression of a Grape -Increased Resistance to Powdery Mildew and Osmotic Stress in Arabidopsis but Enhanced Susceptibility to in Arabidopsis and Tomato.

机构信息

State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, China.

Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling 712100, China.

出版信息

Int J Mol Sci. 2018 Sep 30;19(10):2985. doi: 10.3390/ijms19102985.

Abstract

Stilbene synthase genes make a contribution to improving the tolerances of biotic and abiotic stress in plants. However, the mechanisms mediated by these genes remain unclear. To provide insight into the role of genes defense against biotic and abiotic stress, we overexpressed in and tomato (Micro-Tom) via -mediated transformation. -transformed Arabidopsis lines displayed an increased resistance to powdery mildew, but both -transformed Arabidopsis and tomato lines showed the increased susceptibility to . Besides, transgenic Arabidopsis lines were found to confer tolerance to salt and drought stress in seed and seedlings. When transgenic plants were treated with a different stress, qPCR assays of defense-related genes in transgenic Arabidopsis and tomato suggested that played a specific role in different phytohormone-related pathways, including salicylic acid, jasmonic acid, and abscisic acid signaling pathways. All of these results provided a better understanding of the mechanism behind the role of in biotic and abiotic stress.

摘要

芪合酶基因有助于提高植物对生物和非生物胁迫的耐受性。然而,这些基因介导的机制尚不清楚。为了深入了解基因在抵御生物和非生物胁迫中的作用,我们通过农杆菌介导的转化在拟南芥和番茄(Micro-Tom)中过表达了。过表达芪合酶的拟南芥品系对白粉病的抗性增强,但过表达芪合酶的拟南芥和番茄品系对丁香假单胞菌的敏感性增加。此外,转基因拟南芥品系在种子和幼苗中对盐和干旱胁迫表现出耐受性。当转基因植物受到不同胁迫处理时,转基因拟南芥和番茄中防御相关基因的 qPCR 分析表明,芪合酶在不同的植物激素相关途径中发挥特定作用,包括水杨酸、茉莉酸和脱落酸信号通路。所有这些结果为理解芪合酶在生物和非生物胁迫中的作用机制提供了更好的认识。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3162/6213015/896ecb06b091/ijms-19-02985-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验