Suppr超能文献

通过使用基于双(氟磺酰)亚胺的电解质实现铝的可逆(脱)锂化

Enabling Reversible (De)Lithiation of Aluminum by using Bis(fluorosulfonyl)imide-Based Electrolytes.

作者信息

Qin Bingsheng, Jeong Sangsik, Zhang Huang, Ulissi Ulderico, Vieira Carvalho Diogo, Varzi Alberto, Passerini Stefano

机构信息

Helmholtz Institute Ulm (HIU), Helmholtzstraße 11, 89081, Ulm, Germany.

Karlsruhe Institute of Technology (KIT), PO Box 3640, 76021, Karlsruhe, Germany.

出版信息

ChemSusChem. 2019 Jan 10;12(1):208-212. doi: 10.1002/cssc.201801806. Epub 2018 Nov 5.

Abstract

Aluminum, a cost-effective and abundant metal capable of alloying with Li up to around 1000 mAh g , is a very appealing anode material for high energy density lithium-ion batteries (LIBs). However, despite repeated efforts in the past three decades, reports presenting stable cycling performance are extremely rare. This study concerns recent findings on the highly reversible (de)lithiation of a micro-sized Al anode (m-Al) by using bis(fluorosulfonyl)imide (FSI)-based electrolytes. By using this kind of electrolyte, m-Al can deliver a specific capacity over 900 mAh g and superior Coulombic efficiency (96.8 %) to traditional carbonate- and glyme-based electrolytes (87.8 % and 88.1 %, respectively), which represents the best performance ever obtained for an Al anode without sophisticated structure design. The significantly improved electrochemical performance, which paves the way to realizing high-performance Al-based high energy density LIBs, can be attributed the peculiar solid-electrolyte interphase (SEI) formed by the FSI-containing electrolyte.

摘要

铝是一种具有成本效益且储量丰富的金属,能够与锂形成合金,比容量可达1000 mAh g左右,是用于高能量密度锂离子电池(LIBs)的极具吸引力的负极材料。然而,尽管在过去三十年中人们不断努力,但关于呈现稳定循环性能的报道却极为罕见。本研究关注的是近期有关使用基于双(氟磺酰)亚胺(FSI)的电解质实现微米尺寸铝负极(m-Al)高度可逆(脱)锂化的研究结果。通过使用这种电解质,m-Al能够提供超过900 mAh g的比容量以及优于传统碳酸盐和甘醇二甲醚基电解质(分别为87.8%和88.1%)的库仑效率(96.8%),这代表了在没有复杂结构设计的情况下铝负极所获得的最佳性能。显著改善的电化学性能为实现高性能铝基高能量密度LIBs铺平了道路,这可归因于含FSI电解质形成的特殊固体电解质界面(SEI)。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验