Ricci Marco, Marras Sergio, Krammer Martin, Palanivel Molaiyan, Proietti Zaccaria Remo, Paolella Andrea
Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genova, Italia.
Austrian Institute of Technology, Giefinggasse 4, Vienna, Austria.
Chemphyschem. 2024 Dec 2;25(23):e202400493. doi: 10.1002/cphc.202400493. Epub 2024 Sep 30.
Aluminum (Al) is one of the most promising active materials for producing next-generation negative electrodes for lithium (Li)-ion batteries. It features low density, high specific capacity, and low working potential, making it ideal for producing energy-dense cells. However, this material loses its electrochemical activity within 100 cycles, making it practically unusable. Several claims in the literature support the idea that a dual degradation mechanism is at play. First, the slow diffusion of Li in the Al matrix causes the electrochemical reactions to be partly irreversible, making the initial capacity of the cell drop. Second, the stress caused by cycling make the active material pulverize and lose activity. Recent work shows that shortening the diffusion path of Li by 3D structuring is an effective way to mitigate the first capacity loss mechanism, while alloying Al with other elements effectively mitigates the second one. In this work, we demonstrate that the benefits of 3D structuring and alloying are cumulative and that a mesh made of an Al-magnesium alloy performs better than both a pure Al foil and a foil of an Al-Mg alloy.
铝(Al)是生产下一代锂离子电池负极最有前景的活性材料之一。它具有低密度、高比容量和低工作电位的特点,使其成为生产能量密集型电池的理想材料。然而,这种材料在100次循环内就会失去其电化学活性,使其实际上无法使用。文献中的几项说法支持这样一种观点,即存在双重降解机制。首先,锂在铝基体中的缓慢扩散导致电化学反应部分不可逆,使电池的初始容量下降。其次,循环引起的应力使活性材料粉碎并失去活性。最近的研究表明,通过三维结构化缩短锂的扩散路径是减轻第一种容量损失机制的有效方法,而将铝与其他元素合金化则有效地减轻了第二种机制。在这项工作中,我们证明了三维结构化和合金化的好处是累积的,并且由铝镁合金制成的网比纯铝箔和铝镁合金箔表现更好。