a Biomedical Engineering , Rutgers University , New Brunswick , NJ , USA.
b Chemical and Biochemical Engineering , Rutgers University , New Brunswick , NJ , USA.
J Microencapsul. 2018 Aug;35(5):475-481. doi: 10.1080/02652048.2018.1526341. Epub 2018 Nov 30.
Cell microencapsulation can be used in tissue engineering as a scaffold or physical barrier that provides immunoisolation for donor cells. When used as a barrier, microencapsulation shields donor cells from the host immune system when implanted for cell therapies. Maximizing therapeutic product delivery per volume of microencapsulated cells necessitates first optimising the viability of entrapped cells. Although cell microencapsulation within alginate is well described, best practices for cell microencapsulation within polyethylene glycol is still being elucidated. In this study we microencapsulate mouse preosteoblast cells within polyethylene glycol diacrylate (PEGDA) hydrogel microspheres of varying molecular weight or seeding densities to assess cell viability in relation to cell density and polymer molecular weight. Diffusion studies revealed molecule size permissible by each molecular weight PEGDA towards correlating viability with polymer mesh size. Results demonstrated higher cell viability in higher molecular weight PEGDA microspheres and when cells were seeded at higher cell densities.
细胞微囊化可用于组织工程,作为支架或物理屏障,为供体细胞提供免疫隔离。当用作屏障时,微囊化在细胞治疗中植入时将供体细胞与宿主免疫系统隔离开来。为了使每单位体积的微囊化细胞的治疗产品输送最大化,首先需要优化包封细胞的活力。尽管已经很好地描述了海藻酸盐内的细胞微囊化,但仍在阐明聚乙二醇内的细胞微囊化的最佳实践。在这项研究中,我们将小鼠成骨前体细胞微囊化在聚乙二醇二丙烯酸酯 (PEGDA) 水凝胶微球中,这些微球的分子量或接种密度不同,以评估细胞活力与细胞密度和聚合物分子量的关系。扩散研究表明,每种分子量的 PEGDA 允许的分子大小与聚合物网格大小相关联以确定细胞活力。结果表明,高分子量 PEGDA 微球中的细胞活力更高,当细胞以更高的细胞密度接种时,细胞活力也更高。