Likarda LLC, Kansas City, Missouri, USA.
Department of Rehabilitation Science, University of Kansas Medical Center, Kansas City, Kansas, USA.
Tissue Eng Part A. 2021 Feb;27(3-4):153-164. doi: 10.1089/ten.TEA.2019.0286. Epub 2020 Mar 27.
Cell microencapsulation is a rapidly expanding field with broad potential for stem cell therapies and tissue engineering research. Traditional alginate microspheres suffer from poor biocompatibility, and microencapsulation of more advanced hydrogels is challenging due to their slower gelation rates. We have developed a novel, noncytotoxic, nonemulsion-based method to produce hydrogel microspheres compatible with a wide variety of materials, called core-shell spherification (CSS). Fabrication of microspheres by CSS derived from two slow-hardening hydrogels, hyaluronic acid (HA) and polyethylene glycol diacrylate (PEGDA), was characterized. HA microspheres were manufactured with two different crosslinking methods: thiolation and methacrylation. Microspheres of methacrylated HA (MeHA) had the greatest swelling ratio, the largest average diameter, and the lowest diffusion barrier. In contrast, PEGDA microspheres had the smallest diameters, the lowest swelling ratio, and the highest diffusion barrier, while microspheres of thiolated HA had characteristics that were in between the other two groups. To test the ability of the hydrogels to protect cells, while promoting function, diabetic NOD mice received intraperitoneal injections of PEGDA or MeHA microencapsulated canine islets. PEGDA microspheres reversed diabetes for the length of the study (up to 16 weeks). In contrast, islets encapsulated in MeHA microspheres at the same dose restored normoglycemia, but only transiently (3-4 weeks). Nonencapsulated canine islet transplanted at the same dose did not restore normoglycemia for any length of time. In conclusion, CSS provides a nontoxic microencapsulation procedure compatible with various hydrogel types.
细胞微囊化是一个快速发展的领域,在干细胞治疗和组织工程研究方面具有广泛的应用潜力。传统的海藻酸盐微球存在较差的生物相容性,而更先进的水凝胶的微囊化由于其较慢的凝胶化速度而具有挑战性。我们开发了一种新颖的、非细胞毒性的、非乳液基方法来生产与各种材料兼容的水凝胶微球,称为核壳球化(CSS)。我们对 CSS 衍生的两种缓慢硬化水凝胶(透明质酸(HA)和聚乙二醇二丙烯酸酯(PEGDA))的微球进行了表征。HA 微球采用两种不同的交联方法进行制造:巯基化和甲基丙烯酰化。甲基丙烯酰化 HA(MeHA)微球具有最大的溶胀比、最大的平均直径和最低的扩散屏障。相比之下,PEGDA 微球具有最小的直径、最低的溶胀比和最高的扩散屏障,而巯基化 HA 微球则具有介于这两组之间的特性。为了测试水凝胶保护细胞的能力,同时促进功能,患有糖尿病的 NOD 小鼠接受了 PEGDA 或 MeHA 微囊化犬胰岛的腹腔内注射。PEGDA 微球在研究期间(长达 16 周)逆转了糖尿病。相比之下,相同剂量的 MeHA 微球包封的胰岛恢复了正常血糖水平,但只是暂时的(3-4 周)。相同剂量的未包封的犬胰岛在任何时间都没有恢复正常血糖水平。总之,CSS 提供了一种与各种水凝胶类型兼容的非毒性微囊化程序。