Graduate School of Information Science and Technology, Hokkaido University, N-14, W-9, Kita-ku, Sapporo, Hokkaido, 060-0814, Japan.
Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
J Gastroenterol. 2019 Apr;54(4):321-329. doi: 10.1007/s00535-018-1514-7. Epub 2018 Oct 3.
Deep learning has become a new trend of image recognition tasks in the field of medicine. We developed an automated gastritis detection system using double-contrast upper gastrointestinal barium X-ray radiography.
A total of 6520 gastric X-ray images obtained from 815 subjects were analyzed. We designed a deep convolutional neural network (DCNN)-based gastritis detection scheme and evaluated the effectiveness of our method. The detection performance of our method was compared with that of ABC (D) stratification.
Sensitivity, specificity, and harmonic mean of sensitivity and specificity of our method were 0.962, 0.983, and 0.972, respectively, and those of ABC (D) stratification were 0.925, 0.998, and 0.960, respectively. Although there were 18 false negative cases in ABC (D) stratification, 14 of those 18 cases were correctly classified into the positive group by our method.
Deep learning techniques may be effective for evaluation of gastritis/non-gastritis. Collaborative use of DCNN-based gastritis detection systems and ABC (D) stratification will provide more reliable gastric cancer risk information.
深度学习已成为医学领域图像识别任务的新趋势。我们利用双对比上消化道钡餐 X 射线摄影开发了一种自动胃炎检测系统。
对 815 名受试者的 6520 张胃部 X 射线图像进行了分析。我们设计了一种基于深度卷积神经网络(DCNN)的胃炎检测方案,并评估了该方法的有效性。将我们的方法的检测性能与 ABC(D)分层进行了比较。
我们的方法的灵敏度、特异性和灵敏度与特异性的调和平均值分别为 0.962、0.983 和 0.972,而 ABC(D)分层的灵敏度、特异性和灵敏度与特异性的调和平均值分别为 0.925、0.998 和 0.960。尽管 ABC(D)分层有 18 个假阴性病例,但其中 14 个病例被我们的方法正确分类为阳性组。
深度学习技术可能对胃炎/非胃炎的评估有效。联合使用基于 DCNN 的胃炎检测系统和 ABC(D)分层将提供更可靠的胃癌风险信息。