Li Zongyao, Togo Ren, Ogawa Takahiro, Haseyama Miki
Graduate School of Information Science and Technology, Hokkaido University, N-14, W-9, Kita-ku, Sapporo, 060-0814, Japan.
Faculty of Information Science and Technology, Hokkaido University, N-14, W-9, Kita-ku, Sapporo, 060-0814, Japan.
Med Biol Eng Comput. 2020 Jun;58(6):1239-1250. doi: 10.1007/s11517-020-02159-z. Epub 2020 Mar 27.
High-quality annotations for medical images are always costly and scarce. Many applications of deep learning in the field of medical image analysis face the problem of insufficient annotated data. In this paper, we present a semi-supervised learning method for chronic gastritis classification using gastric X-ray images. The proposed semi-supervised learning method based on tri-training can leverage unannotated data to boost the performance that is achieved with a small amount of annotated data. We utilize a novel learning method named Between-Class learning (BC learning) that can considerably enhance the performance of our semi-supervised learning method. As a result, our method can effectively learn from unannotated data and achieve high diagnostic accuracy for chronic gastritis. Graphical Abstract Gastritis classification using gastric X-ray images with semi-supervised learning.
高质量的医学图像标注成本高昂且数量稀少。深度学习在医学图像分析领域的许多应用都面临标注数据不足的问题。在本文中,我们提出了一种使用胃部X光图像进行慢性胃炎分类的半监督学习方法。所提出的基于三训练的半监督学习方法可以利用未标注数据来提高在少量标注数据上所取得的性能。我们采用了一种名为类间学习(BC学习)的新颖学习方法,该方法可以显著提高我们半监督学习方法的性能。结果,我们的方法能够有效地从未标注数据中学习,并实现对慢性胃炎的高诊断准确率。图形摘要:使用半监督学习的胃部X光图像进行胃炎分类。