Suppr超能文献

利用 CRISPR 技术进行体内表观基因组编辑和转录调控。

In vivo epigenome editing and transcriptional modulation using CRISPR technology.

机构信息

Department of Biomedical Engineering, City University of Hong Kong, Room Y1618, Academic 1, 83 Tat Chee Avenue, Hong Kong, SAR, China.

Department of Genetics, Michael F. Price Center, Albert Einstein College of Medicine, 1301 Morris Park Avenue, Room 475, Bronx, NY, 10461, USA.

出版信息

Transgenic Res. 2018 Dec;27(6):489-509. doi: 10.1007/s11248-018-0096-8. Epub 2018 Oct 4.

Abstract

The rapid advancement of CRISPR technology has enabled targeted epigenome editing and transcriptional modulation in the native chromatin context. However, only a few studies have reported the successful editing of the epigenome in adult animals in contrast to the rapidly growing number of in vivo genome editing over the past few years. In this review, we discuss the challenges facing in vivo epigenome editing and new strategies to overcome the huddles. The biggest challenge has been the difficulty in packaging dCas9 fusion proteins required for manipulation of epigenome into the adeno-associated virus (AAV) delivery vehicle. We review the strategies to address the AAV packaging issue, including small dCas9 orthologues, truncated dCas9 mutants, a split-dCas9 system, and potent truncated effector domains. We discuss the dCas9 conjugation strategies to recruit endogenous chromatin modifiers and remodelers to specific genomic loci, and recently developed methods to recruit multiple copies of the dCas9 fusion protein, or to simultaneous express multiple gRNAs for robust epigenome editing or synergistic transcriptional modulation. The use of Cre-inducible dCas9-expressing mice or a genetic cross between dCas9- and sgRNA-expressing flies has also helped overcome the transgene delivery issue. We provide perspective on how a combination use of these strategies can facilitate in vivo epigenome editing and transcriptional modulation.

摘要

CRISPR 技术的快速发展使得在天然染色质环境中靶向进行表观基因组编辑和转录调控成为可能。然而,与过去几年中体内基因组编辑数量的快速增长相比,只有少数研究报道了在成年动物中成功编辑表观基因组。在这篇综述中,我们讨论了体内表观基因组编辑所面临的挑战和克服这些障碍的新策略。最大的挑战一直是将用于表观基因组操作的 dCas9 融合蛋白包装到腺相关病毒(AAV)递送载体中存在困难。我们回顾了解决 AAV 包装问题的策略,包括小 dCas9 同源物、截断的 dCas9 突变体、分裂 dCas9 系统和有效的截断效应结构域。我们讨论了 dCas9 缀合策略,以将内源性染色质修饰酶和重塑酶募集到特定基因组位点,以及最近开发的方法,以募集多个 dCas9 融合蛋白拷贝,或同时表达多个 gRNA 以实现强大的表观基因组编辑或协同转录调控。使用 Cre 诱导型 dCas9 表达小鼠或 dCas9 和 sgRNA 表达果蝇之间的遗传杂交也有助于克服转基因递送问题。我们提供了如何结合使用这些策略来促进体内表观基因组编辑和转录调控的观点。

相似文献

1
In vivo epigenome editing and transcriptional modulation using CRISPR technology.
Transgenic Res. 2018 Dec;27(6):489-509. doi: 10.1007/s11248-018-0096-8. Epub 2018 Oct 4.
2
Stabilization of Foxp3 expression by CRISPR-dCas9-based epigenome editing in mouse primary T cells.
Epigenetics Chromatin. 2017 May 8;10:24. doi: 10.1186/s13072-017-0129-1. eCollection 2017.
3
Protocol for Allele-Specific Epigenome Editing Using CRISPR/dCas9.
Methods Mol Biol. 2024;2842:179-192. doi: 10.1007/978-1-0716-4051-7_9.
4
CRISPR/Cas9-based epigenome editing: An overview of dCas9-based tools with special emphasis on off-target activity.
Methods. 2019 Jul 15;164-165:109-119. doi: 10.1016/j.ymeth.2019.05.003. Epub 2019 May 6.
5
Epigenome editing of the CFTR-locus for treatment of cystic fibrosis.
J Cyst Fibros. 2022 Jan;21(1):164-171. doi: 10.1016/j.jcf.2021.04.008. Epub 2021 May 25.
6
Establishment of Cell Lines Stably Expressing dCas9-Fusions to Address Kinetics of Epigenetic Editing.
Methods Mol Biol. 2018;1767:395-415. doi: 10.1007/978-1-4939-7774-1_22.
7
Fine-Tuning the Epigenetic Landscape: Chemical Modulation of Epigenome Editors.
Methods Mol Biol. 2024;2842:57-77. doi: 10.1007/978-1-0716-4051-7_3.
9
CRISPR/dCas9 platforms in plants: strategies and applications beyond genome editing.
Plant Biotechnol J. 2020 Jan;18(1):32-44. doi: 10.1111/pbi.13232. Epub 2019 Sep 3.
10
Transgenic mice for in vivo epigenome editing with CRISPR-based systems.
Nat Methods. 2021 Aug;18(8):965-974. doi: 10.1038/s41592-021-01207-2. Epub 2021 Aug 2.

引用本文的文献

1
The Strategy and Application of Gene Attenuation in Metabolic Engineering.
Microorganisms. 2025 Apr 17;13(4):927. doi: 10.3390/microorganisms13040927.
2
Rational design yields RNA-binding zinc finger domains with altered sequence specificity.
RNA. 2025 Jan 22;31(2):150-163. doi: 10.1261/rna.080329.124.
3
Next-generation CRISPR technology for genome, epigenome and mitochondrial editing.
Transgenic Res. 2024 Oct;33(5):323-357. doi: 10.1007/s11248-024-00404-x. Epub 2024 Aug 19.
4
DNA methylation in mammalian development and disease.
Nat Rev Genet. 2025 Jan;26(1):7-30. doi: 10.1038/s41576-024-00760-8. Epub 2024 Aug 12.
5
Engineering CRISPR/Cas9 therapeutics for cancer precision medicine.
Front Genet. 2024 Apr 25;15:1309175. doi: 10.3389/fgene.2024.1309175. eCollection 2024.
6
Expression and Functional Analysis of the Compact Thermophilic Cas9 Nuclease.
Int J Mol Sci. 2023 Dec 4;24(23):17121. doi: 10.3390/ijms242317121.
7
Targeted Modulation of Chicken Genes In Vitro Using CRISPRa and CRISPRi Toolkit.
Genes (Basel). 2023 Apr 13;14(4):906. doi: 10.3390/genes14040906.
8
Mechanisms regulating the CRISPR-Cas systems.
Front Microbiol. 2023 Feb 28;14:1060337. doi: 10.3389/fmicb.2023.1060337. eCollection 2023.
9
Zebrafish Models of Paediatric Brain Tumours.
Int J Mol Sci. 2022 Aug 31;23(17):9920. doi: 10.3390/ijms23179920.
10
Epigenetics of scleroderma: Integrating genetic, ethnic, age, and environmental effects.
J Scleroderma Relat Disord. 2019 Oct;4(3):238-250. doi: 10.1177/2397198319855872. Epub 2019 Jul 3.

本文引用的文献

1
Enhancer Activity Requires CBP/P300 Bromodomain-Dependent Histone H3K27 Acetylation.
Cell Rep. 2018 Aug 14;24(7):1722-1729. doi: 10.1016/j.celrep.2018.07.041.
2
An enhanced CRISPR repressor for targeted mammalian gene regulation.
Nat Methods. 2018 Aug;15(8):611-616. doi: 10.1038/s41592-018-0048-5. Epub 2018 Jul 16.
3
Human pluripotent reprogramming with CRISPR activators.
Nat Commun. 2018 Jul 6;9(1):2643. doi: 10.1038/s41467-018-05067-x.
4
Synthetic far-red light-mediated CRISPR-dCas9 device for inducing functional neuronal differentiation.
Proc Natl Acad Sci U S A. 2018 Jul 17;115(29):E6722-E6730. doi: 10.1073/pnas.1802448115. Epub 2018 Jul 2.
5
A Single Multiplex crRNA Array for FnCpf1-Mediated Human Genome Editing.
Mol Ther. 2018 Aug 1;26(8):2070-2076. doi: 10.1016/j.ymthe.2018.05.021. Epub 2018 Jun 15.
6
In Situ Gene Therapy via AAV-CRISPR-Cas9-Mediated Targeted Gene Regulation.
Mol Ther. 2018 Jul 5;26(7):1818-1827. doi: 10.1016/j.ymthe.2018.04.017. Epub 2018 Apr 25.
7
RNA-guided transcriptional silencing in vivo with S. aureus CRISPR-Cas9 repressors.
Nat Commun. 2018 Apr 26;9(1):1674. doi: 10.1038/s41467-018-04048-4.
8
Next-generation CRISPR/Cas9 transcriptional activation in using flySAM.
Proc Natl Acad Sci U S A. 2018 May 1;115(18):4719-4724. doi: 10.1073/pnas.1800677115. Epub 2018 Apr 16.
9
Highly parallel genome variant engineering with CRISPR-Cas9.
Nat Genet. 2018 Apr;50(4):510-514. doi: 10.1038/s41588-018-0087-y. Epub 2018 Apr 9.
10
Rational Design of Mini-Cas9 for Transcriptional Activation.
ACS Synth Biol. 2018 Apr 20;7(4):978-985. doi: 10.1021/acssynbio.7b00404. Epub 2018 Mar 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验