Suppr超能文献

使用 CRISPR/dCas9 进行等位基因特异性表观基因组编辑的方案。

Protocol for Allele-Specific Epigenome Editing Using CRISPR/dCas9.

机构信息

Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Stuttgart, Germany.

出版信息

Methods Mol Biol. 2024;2842:179-192. doi: 10.1007/978-1-0716-4051-7_9.

Abstract

The discovery and adaptation of CRISPR/Cas systema for epigenome editing has allowed for a straightforward design of targeting modules that can direct epigenome editors to virtually any genomic site. This advancement in DNA-targeting technology brings allele-specific epigenome editing into reach, a "super-specific" variation of epigenome editing whose goal is an alteration of chromatin marks at only one selected allele of the genomic target locus. This technology could be useful for the treatment of diseases caused by a mutant allele with a dominant effect, because allele-specific epigenome editing allows the specific silencing of the mutated allele leaving the healthy counterpart expressed. Moreover, it may allow the direct correction of aberrant imprints in imprinting disorders where editing of DNA methylation is required exclusively in a single allele. Here, we describe a basic protocol for the design and application of allele-specific epigenome editing systems using allele-specific DNA methylation at the NARF gene in HEK293 cells as an example. An sgRNA/dCas9 unit is used for allele-specific binding to the target locus containing a SNP in the seed region of the sgRNA or the PAM region. The dCas9 protein is connected to a SunTag allowing to recruit up to 10 DNMT3A/3L units fused to a single-chain Fv fragment, which specifically binds to the SunTag peptide sequence. The plasmids expressing dCas9-10x SunTag, scFv-DNMT3A/3L, and sgRNA, each of them co-expressing a fluorophore, are introduced into cells by co-transfection. Cells containing all three plasmids are enriched by FACS, cultivated, and later the genomic DNA and RNA can be retrieved for DNA methylation and gene expression analysis.

摘要

CRISPR/Cas 系统的发现和适应使靶向模块的设计变得简单,可以将表观基因组编辑器直接引导到几乎任何基因组位点。这项 DNA 靶向技术的进步使等位基因特异性表观基因组编辑成为可能,这是一种“超级特异性”的表观基因组编辑,其目标是仅在基因组靶标位点的一个选定等位基因上改变染色质标记。这项技术对于治疗由显性效应的突变等位基因引起的疾病可能很有用,因为等位基因特异性表观基因组编辑允许特异性沉默突变等位基因,而保留健康等位基因的表达。此外,它可能允许直接纠正印记障碍中的异常印记,在这种情况下,需要在单个等位基因中编辑 DNA 甲基化。在这里,我们描述了一种使用 HEK293 细胞中 NARF 基因的等位基因特异性 DNA 甲基化为示例设计和应用等位基因特异性表观基因组编辑系统的基本方案。sgRNA/dCas9 单元用于与包含 sgRNA 种子区域或 PAM 区域中 SNP 的靶标位点的等位基因特异性结合。dCas9 蛋白与 SunTag 连接,允许招募多达 10 个与单个链 Fv 片段融合的 DNMT3A/3L 单位,该片段特异性结合 SunTag 肽序列。表达 dCas9-10x SunTag、scFv-DNMT3A/3L 和 sgRNA 的质粒,每个质粒都表达一种荧光蛋白,通过共转染引入细胞。通过 FACS 富集含有所有三个质粒的细胞,培养,然后可以回收基因组 DNA 和 RNA 进行 DNA 甲基化和基因表达分析。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验