Department of Electrical and Computer Engineering, 8223 Paint Branch Dr, A.V. Williams Bldg, University of Maryland, College Park, MD, 20742, USA.
Institute for Systems Research, 8223 Paint Branch Dr, A.V. Williams Bldg, University of Maryland, College Park, MD, USA.
Biotechnol J. 2018 Dec;13(12):e1800147. doi: 10.1002/biot.201800147. Epub 2018 Oct 17.
Viruses are unique biological agents that infect living host cells through molecular delivery of a genomic cargo. Over the past two decades advancements in genetic engineering and bioconjugation technologies have allowed the unprecedented use of these "unfriendly" biological molecules, as nanoscopic platforms for the advancement of an array of nanotechnology applications. This mini-review focuses on providing a brief summary of key demonstrations leveraging the versatile characteristics of Tobacco mosaic virus (TMV) for molecular assembly and bio-device integration. A comprehensive discussion of genetic and chemical modification strategies along with potential limiting factors that impact the assembly of these macromolecules is presented to provide useful insights for adapting TMV as a potentially universal platform toward developing advanced nanomaterials. Additional discussions on biofabrication techniques developed in parallel to enable immobilization, alignment, and patterning of TMV-based functional particles on solid surfaces will highlight technological innovations that can be widely adapted for creating nanoscopic device components using these engineered biomacromolecules. Further exploitation in the design of molecular specificity and assembly mechanisms and the development of highly controllable and scalable TMV-device integration strategies will expand the library of nanoscale engineering tools that can be used for the further development of virus-based nanotechnology platforms.
病毒是通过分子传递基因组有效负载来感染活宿主细胞的独特生物制剂。在过去的二十年中,基因工程和生物共轭技术的进步允许前所未有地使用这些“不友好”的生物分子作为纳米技术应用的纳米级平台。本篇综述简要总结了利用烟草花叶病毒(TMV)的多功能特性进行分子组装和生物器件集成的关键实例。本文全面讨论了遗传和化学修饰策略,以及影响这些大分子组装的潜在限制因素,为将 TMV 作为一种潜在的通用平台来开发先进的纳米材料提供了有用的见解。此外,还讨论了为了在固体表面上实现 TMV 基功能颗粒的固定、对准和图案化而开发的生物制造技术,突出了可广泛应用于使用这些工程生物大分子制造纳米级器件组件的技术创新。进一步探索分子特异性和组装机制的设计以及高度可控和可扩展的 TMV 器件集成策略将扩展可用于进一步开发基于病毒的纳米技术平台的纳米级工程工具库。