Suppr超能文献

可扩展微流控平台,用于灵活配置和实验微组织多器官模型。

Scalable Microfluidic Platform for Flexible Configuration of and Experiments with Microtissue Multiorgan Models.

机构信息

1 Eidgenössische Technische Hochschule Zürich, Department of Biosystems Science and Engineering, Bio Engineering Laboratory, Basel, Switzerland.

2 InSphero AG, Schlieren, Switzerland.

出版信息

SLAS Technol. 2019 Feb;24(1):79-95. doi: 10.1177/2472630318802582. Epub 2018 Oct 5.

Abstract

Microphysiological systems hold the promise to increase the predictive and translational power of in vitro substance testing owing to their faithful recapitulation of human physiology. However, the implementation of academic developments in industrial settings remains challenging. We present an injection-molded microfluidic microtissue (MT) culture chip that features two channels with 10 MT compartments each and that was designed in compliance with microtiter plate standard formats. Polystyrene as a chip material enables reliable, large-scale production and precise control over experimental conditions due to low adsorption or absorption of small, hydrophobic molecules at or into the plastic material in comparison with predecessor chips made of polydimethylsiloxane. The chip is operated by tilting, which actuates gravity-driven flow between reservoirs at both ends of every channel, so that the system does not require external tubing or pumps. The flow rate can be modulated by adjusting the tilting angle on demand. The top-open design of the MT compartment enables efficient MT loading using standard or advanced pipetting equipment, ensures oxygen availability in the chip, and allows for high-resolution imaging. Every channel can be loaded with up to 10 identical or different MTs, as demonstrated by culturing liver and tumor MTs in the same medium channel on the chip.

摘要

微生理系统有望通过忠实再现人体生理学来提高体外物质测试的预测性和转化能力。然而,在工业环境中实施学术发展仍然具有挑战性。我们提出了一种注塑微流控微组织(MT)培养芯片,它具有两个通道,每个通道有 10 个 MT 隔室,并且符合微量滴定板标准格式进行设计。与先前使用聚二甲基硅氧烷制成的芯片相比,聚苯乙烯作为芯片材料由于其对小的疏水分子在塑料材料中的吸附或吸收较低,因此能够实现可靠的大规模生产和对实验条件的精确控制。该芯片通过倾斜操作,在每个通道的两端的储液器之间产生重力驱动的流动,因此系统不需要外部管道或泵。通过按需调整倾斜角度,可以调节流速。MT 隔室的顶开设计允许使用标准或先进的移液设备高效加载 MT,确保芯片中有足够的氧气,并允许进行高分辨率成像。每个通道最多可以加载 10 个相同或不同的 MT,如在芯片上的同一介质通道中培养肝和肿瘤 MT 所示。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验