Wong Henry C, Collins Chris J, Jude Jose Joshna A, Bhakta Isha N, Collins Andrew J, Katara Gunjan, Kohana Johar, Saluja Harpreet S, Collins John
Biopico Systems Inc, 188 Technology Dr, Suite G, Irvine CA 92618.
bioRxiv. 2025 Jun 24:2025.06.18.660241. doi: 10.1101/2025.06.18.660241.
The high attrition rate of drug candidates in clinical trials underscores the urgent need for more predictive preclinical models that accurately replicate human physiology. Traditional two-dimensional (2D) cell cultures and animal models often fail to predict human responses due to their limited physiological relevance. This highlights the need for modeling and measurements of multiorgan interactions at higher throughput prompting the development of multiorgan-on-a-plate (MOAP) platforms. Here, we present OrganRX, a modular, gravity-driven recirculation-based MOAP system designed to imitate human organ function, fluid dynamics, and inter-organ communication in vitro. The platform based on Fluidic Programmable Gravi-maze Array (FPGA) integrates multiple organ types-gut, liver, kidney, brain, and endothelium-within a microfluidic architecture that replicates physiological shear stress and unidirectional flow. Using computational fluid dynamics (CFD) simulations and impedance-based flow validation, we confirmed accurate shear control across organ compartments. Organ-specific and multiorgan models were constructed with 3D extracellular matrix hydrogels and assessed for metabolism and senescence. Liver-kidney co-cultures demonstrated metabolic interplay via differential albumin and urea production. Additionally, in drug response studies, phenylbutyrate (PB) alone reduced brain ROS in a gut-brain model, while subsequent treatment with curcumin (C) unexpectedly reversed this benefit, revealing context-specific drug interactions not observable in isolated organ models. Overall, the FPGA trademarked as OrganRX offers a physiologically relevant, scalable, and automation-compatible platform for preclinical drug evaluation and disease modeling. Its ability to capture complex, dynamic inter-organ effects positions it as a powerful tool for advancing translational research and precision medicine.
临床试验中候选药物的高损耗率凸显了对更具预测性的临床前模型的迫切需求,这些模型能够准确复制人体生理学。传统的二维(2D)细胞培养和动物模型由于其有限的生理相关性,常常无法预测人体反应。这突出了对更高通量下多器官相互作用进行建模和测量的需求,从而推动了多器官芯片(MOAP)平台的发展。在此,我们介绍OrganRX,这是一种基于模块化、重力驱动再循环的MOAP系统,旨在体外模拟人体器官功能、流体动力学和器官间通信。该平台基于流体可编程重力迷宫阵列(FPGA),在微流体结构中整合了多种器官类型——肠道、肝脏、肾脏、大脑和内皮细胞,该结构可复制生理剪切应力和单向流动。通过计算流体动力学(CFD)模拟和基于阻抗的流量验证,我们证实了跨器官隔室的精确剪切控制。使用3D细胞外基质水凝胶构建了器官特异性和多器官模型,并评估了其代谢和衰老情况。肝肾共培养显示出通过白蛋白和尿素产生差异的代谢相互作用。此外,在药物反应研究中,单独使用苯丁酸盐(PB)可降低肠脑模型中的脑ROS,而随后用姜黄素(C)治疗意外地逆转了这种益处,揭示了在孤立器官模型中无法观察到的特定背景下的药物相互作用。总体而言,商标为OrganRX的FPGA提供了一个生理相关、可扩展且与自动化兼容的临床前药物评估和疾病建模平台。它捕捉复杂、动态器官间效应的能力使其成为推进转化研究和精准医学的有力工具。