Suppr超能文献

原核生物在通过慢速砂滤处理的饮用水暴露表面生物膜中的生长中起着关键作用。

Primary Colonizing Play a Key Role in the Growth of in Biofilms on Surfaces Exposed to Drinking Water Treated by Slow Sand Filtration.

机构信息

KWR Watercycle Research Institute, Nieuwegein, The Netherlands

KWR Watercycle Research Institute, Nieuwegein, The Netherlands.

出版信息

Appl Environ Microbiol. 2018 Nov 30;84(24). doi: 10.1128/AEM.01732-18. Print 2018 Dec 15.

Abstract

Slow sand filtration with extensive pretreatment reduces the microbial growth potential of drinking water to a minimum level at four surface water supplies in The Netherlands. The potential of these slow sand filtrates (SSFs) to promote microbial growth in warm tap water installations was assessed by measuring biofilm formation and growth of bacteria on glass and chlorinated polyvinylchloride (CPVC) surfaces exposed to SSFs at 37 ± 2°C in a model system for up to six months. The steady-state biofilm concentration ranged from 230 to 3,980 pg ATP cm on glass and 1.4 (±0.3)-times-higher levels on CPVC. These concentrations correlated significantly with the assimilable organic carbon (AOC) concentrations of the warm water (8 to 24 µg acetate-C equivalents [ac-C eq] liter), which were raised about 2 times by mixing cold and heated (70°C) SSFs. All biofilms supported growth of with maximum concentrations ranging from 6 × 10 to 1.5 × 10 CFU cm Biofilms after ≤50 days of exposure were predominated by , mainly , , , and an uncultured bacterium. These rapidly growing primary colonizers most likely served as prey for the host amoebae of , mostly , e.g., , , and other amoeba-resistant bacteria, accounted for 37.5% of the clones retrieved. A conceptual model based on a quadratic relationship between the colony count and the biofilm concentration under steady-state conditions is used to explain the variations in the CFU pg ATP ratios in the biofilms. Proliferation of in premise plumbing poses a public health threat. Extended water treatment using physicochemical and biofiltration processes, including slow sand filtration, at four surface water supplies in The Netherlands reduces the microbial growth potential of the treated water to a minimum level, and the distributed drinking water complies with high quality standards. However, heating of the water in warm tap water installations increases the concentration of easily assimilable organic compounds, thereby promoting biofilm formation and growth of Prevention of biofilm formation in plumbing systems by maintenance of a disinfectant residual during distribution and/or further natural organic matter (NOM) removal is not feasible in the supplies studied. Temperature management in combination with optimized hydraulics and material selection are therefore essential to prevent growth of in premise plumbing systems. Still, reducing the concentration of biodegradable compounds in drinking water by appropriate water treatment is important for limiting the growth potential.

摘要

在荷兰的四个地表水供水系统中,经过广泛预处理的慢速砂滤可将饮用水的微生物生长潜力降至最低水平。通过在 37 ± 2°C 的模型系统中测量暴露于慢速砂滤器 (SSF) 时玻璃和氯化聚氯乙烯 (CPVC) 表面上的生物膜形成和细菌生长,评估了这些慢速砂滤器 (SSF) 在温暖的自来水装置中促进微生物生长的潜力,最长可达六个月。在玻璃上,稳态生物膜浓度范围为 230 至 3980 pg ATP cm,在 CPVC 上的浓度高 1.4(±0.3)倍。这些浓度与温暖水(8 至 24 µg 乙酸-C 当量 [ac-C eq] 升)的可同化有机碳 (AOC) 浓度显著相关,将冷和加热(70°C)SSF 混合后,AOC 浓度升高约 2 倍。所有生物膜都支持 的生长,最大浓度范围为 6×10 至 1.5×10 CFU cm。暴露 ≤50 天后的生物膜主要由 、主要是 、 、 、和未培养的 细菌组成。这些快速生长的初级定植者很可能作为 的宿主变形虫的猎物,主要是 、例如 、 、和其他抗变形虫的细菌,占回收克隆的 37.5%。基于稳态条件下 菌落计数与生物膜浓度之间二次关系的概念模型用于解释生物膜中 的 CFU pg ATP 比值的变化。在前提管道中 的增殖对公共健康构成威胁。在荷兰的四个地表水供水系统中,使用物理化学和生物过滤工艺(包括慢速砂滤)进行延长的水处理可将处理水的微生物生长潜力降至最低水平,并且分配的饮用水符合高质量标准。然而,在温暖的自来水装置中加热水会增加易同化有机化合物的浓度,从而促进 生物膜的形成和生长。在研究的供水系统中,通过在分配过程中保持消毒剂残留或进一步去除天然有机物 (NOM) 来防止管道系统中生物膜的形成是不可行的。因此,温度管理与优化的水力和材料选择相结合对于防止前提管道系统中 的生长至关重要。尽管如此,通过适当的水处理来降低饮用水中可生物降解化合物的浓度对于限制 的生长潜力仍然很重要。

相似文献

1
3
Chlorine and Monochloramine Disinfection of Colonizing Copper and Polyvinyl Chloride Drinking Water Biofilms.
Appl Environ Microbiol. 2019 Mar 22;85(7). doi: 10.1128/AEM.02956-18. Print 2019 Apr 1.
7
Long-term persistence of infectious Legionella with free-living amoebae in drinking water biofilms.
Int J Hyg Environ Health. 2019 May;222(4):678-686. doi: 10.1016/j.ijheh.2019.04.007. Epub 2019 Apr 27.
10
Spatial distribution of Legionella pneumophila MLVA-genotypes in a drinking water system.
Water Res. 2015 Jun 15;77:119-132. doi: 10.1016/j.watres.2015.03.010. Epub 2015 Mar 25.

引用本文的文献

1
Dynamics of drinking water biofilm formation associated with Legionella spp. colonization.
NPJ Biofilms Microbiomes. 2024 Oct 6;10(1):101. doi: 10.1038/s41522-024-00573-x.
3
Microbiome differences between wild and aquarium whitespotted eagle rays (Aetobatus narinari).
Anim Microbiome. 2022 May 23;4(1):34. doi: 10.1186/s42523-022-00187-8.
4
A global meta-analysis of animal manure application and soil microbial ecology based on random control treatments.
PLoS One. 2022 Jan 21;17(1):e0262139. doi: 10.1371/journal.pone.0262139. eCollection 2022.
5
The Impact of Pipe Material on the Diversity of Microbial Communities in Drinking Water Distribution Systems.
Front Microbiol. 2021 Dec 21;12:779016. doi: 10.3389/fmicb.2021.779016. eCollection 2021.
6
Chlorine Disinfection of spp., , and under Warm Water Premise Plumbing Conditions.
Microorganisms. 2020 Sep 22;8(9):1452. doi: 10.3390/microorganisms8091452.
7
and Protozoan Hosts: Implications for the Control of Hospital and Potable Water Systems.
Pathogens. 2020 Apr 15;9(4):286. doi: 10.3390/pathogens9040286.

本文引用的文献

1
Surveillance for Waterborne Disease Outbreaks Associated with Drinking Water - United States, 2013-2014.
MMWR Morb Mortal Wkly Rep. 2017 Nov 10;66(44):1216-1221. doi: 10.15585/mmwr.mm6644a3.
3
Legionnaires' disease in Europe, 2011 to 2015.
Euro Surveill. 2017 Jul 6;22(27). doi: 10.2807/1560-7917.ES.2017.22.27.30566.
7
Surveillance for Waterborne Disease Outbreaks Associated with Drinking Water - United States, 2011-2012.
MMWR Morb Mortal Wkly Rep. 2015 Aug 14;64(31):842-8. doi: 10.15585/mmwr.mm6431a2.
10
Microbiome of free-living amoebae isolated from drinking water.
Water Res. 2013 Dec 1;47(19):6958-65. doi: 10.1016/j.watres.2013.07.047. Epub 2013 Oct 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验