Suppr超能文献

使用角崩溃点评估分类的稳健性。

ASSESSING ROBUSTNESS OF CLASSIFICATION USING ANGULAR BREAKDOWN POINT.

作者信息

Zhao Junlong, Yu Guan, Liu Yufeng

机构信息

Beijing Normal University, China.

State University of New York at Buffalo, USA.

出版信息

Ann Stat. 2018 Dec;46(6B):3362-3389. doi: 10.1214/17-AOS1661. Epub 2018 Sep 11.

Abstract

Robustness is a desirable property for many statistical techniques. As an important measure of robustness, breakdown point has been widely used for regression problems and many other settings. Despite the existing development, we observe that the standard breakdown point criterion is not directly applicable for many classification problems. In this paper, we propose a new breakdown point criterion, namely angular breakdown point, to better quantify the robustness of different classification methods. Using this new breakdown point criterion, we study the robustness of binary large margin classification techniques, although the idea is applicable to general classification methods. Both bounded and unbounded loss functions with linear and kernel learning are considered. These studies provide useful insights on the robustness of different classification methods. Numerical results further confirm our theoretical findings.

摘要

稳健性是许多统计技术所期望具备的特性。作为稳健性的一项重要度量,崩溃点已在回归问题及许多其他情形中得到广泛应用。尽管已有相关进展,但我们观察到标准的崩溃点准则并不直接适用于许多分类问题。在本文中,我们提出一种新的崩溃点准则,即角度崩溃点,以更好地量化不同分类方法的稳健性。使用这种新的崩溃点准则,我们研究了二元大间隔分类技术的稳健性,尽管该思想适用于一般的分类方法。我们考虑了线性和核学习下的有界和无界损失函数。这些研究为不同分类方法的稳健性提供了有用的见解。数值结果进一步证实了我们的理论发现。

相似文献

1
ASSESSING ROBUSTNESS OF CLASSIFICATION USING ANGULAR BREAKDOWN POINT.使用角崩溃点评估分类的稳健性。
Ann Stat. 2018 Dec;46(6B):3362-3389. doi: 10.1214/17-AOS1661. Epub 2018 Sep 11.
2
A novel bounded loss framework for support vector machines.一种用于支持向量机的新型有界损失框架。
Neural Netw. 2024 Oct;178:106476. doi: 10.1016/j.neunet.2024.106476. Epub 2024 Jun 25.
6
Deformation of log-likelihood loss function for multiclass boosting.多类提升的对数似然损失函数的变形。
Neural Netw. 2010 Sep;23(7):843-64. doi: 10.1016/j.neunet.2010.05.009. Epub 2010 May 26.
7
Sparse Machine Learning in Banach Spaces.巴拿赫空间中的稀疏机器学习
Appl Numer Math. 2023 May;187:138-157. doi: 10.1016/j.apnum.2023.02.011. Epub 2023 Feb 15.

本文引用的文献

1
New support vector algorithms.新的支持向量算法。
Neural Comput. 2000 May;12(5):1207-45. doi: 10.1162/089976600300015565.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验