Suppr超能文献

具有关联记忆应用的时滞混合脉冲神经网络的多重稳定性

Multistability of Delayed Hybrid Impulsive Neural Networks With Application to Associative Memories.

作者信息

Hu Bin, Guan Zhi-Hong, Chen Guanrong, Lewis Frank L

出版信息

IEEE Trans Neural Netw Learn Syst. 2019 May;30(5):1537-1551. doi: 10.1109/TNNLS.2018.2870553. Epub 2018 Oct 8.

Abstract

The important topic of multistability of continuous-and discrete-time neural network (NN) models has been investigated rather extensively. Concerning the design of associative memories, multistability of delayed hybrid NNs is studied in this paper with an emphasis on the impulse effects. Arising from the spiking phenomenon in biological networks, impulsive NNs provide an efficient model for synaptic interconnections among neurons. Using state-space decomposition, the coexistence of multiple equilibria of hybrid impulsive NNs is analyzed. Multistability criteria are then established regrading delayed hybrid impulsive neurodynamics, for which both the impulse effects on the convergence rate and the basins of attraction of the equilibria are discussed. Illustrative examples are given to verify the theoretical results and demonstrate an application to the design of associative memories. It is shown by an experimental example that delayed hybrid impulsive NNs have the advantages of high storage capacity and high fault tolerance when used for associative memories.

摘要

连续时间和离散时间神经网络(NN)模型的多稳定性这一重要课题已得到相当广泛的研究。关于联想记忆的设计,本文研究了时滞混合神经网络的多稳定性,重点关注脉冲效应。脉冲神经网络源于生物网络中的尖峰现象,为神经元之间的突触互连提供了一个有效的模型。利用状态空间分解,分析了混合脉冲神经网络多个平衡点的共存情况。然后建立了关于时滞混合脉冲神经动力学的多稳定性准则,讨论了脉冲对收敛速度和平衡点吸引域的影响。给出了示例以验证理论结果,并展示其在联想记忆设计中的应用。一个实验示例表明,时滞混合脉冲神经网络用于联想记忆时具有高存储容量和高容错性的优点。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验