Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Centro de Envejecimiento y Regeneración (CARE-UC), Pontificia Universidad Católica de Chile, Santiago, Chile.
Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
J Neurochem. 2019 Apr;149(1):54-72. doi: 10.1111/jnc.14608. Epub 2018 Dec 5.
Dysregulated Wnt signaling is linked to major neurodegenerative diseases, including Alzheimer disease (AD). In mouse models of AD, activation of the canonical Wnt signaling pathway improves learning/memory, but the mechanism for this remains unclear. The decline in brain function in AD patients correlates with reduced glucose utilization by neurons. Here, we test whether improvements in glucose metabolism mediate the neuroprotective effects of Wnt in AD mouse model. APPswe/PS1dE9 transgenic mice were used to model AD, Andrographolide or Lithium was used to activate Wnt signaling, and cytochalasin B was used to block glucose uptake. Cognitive function was assessed by novel object recognition and memory flexibility tests. Glucose uptake and the glycolytic rate were determined using radiotracer glucose. The activities of key enzymes of glycolysis such as hexokinase and phosphofructokinase, Adenosine triphosphate (ATP)/Adenosine diphosphate (ADP) levels and the pentose phosphate pathway and activity of glucose-6 phosphate dehydrogenase were measured. Wnt activators significantly improved brain glucose utilization and cognitive performance in transgenic mice. Wnt signaling enhanced glucose metabolism by increasing the expression and/or activity of hexokinase, phosphofructokinase and AMP-activated protein kinase. Inhibiting glucose uptake partially abolished the beneficial effects of Wnt signaling on learning/memory. Wnt activation also enhanced glucose metabolism in cortical and hippocampal neurons, as well as brain slices derived from APPswe/PS1E9 transgenic mice. Combined, these data provide evidence that the neuroprotective effects of Wnt signaling in AD mouse models result, at least in part, from Wnt-mediated improvements in neuronal glucose metabolism.
Wnt 信号通路失调与包括阿尔茨海默病(AD)在内的主要神经退行性疾病有关。在 AD 的小鼠模型中,经典 Wnt 信号通路的激活可改善学习/记忆,但这一机制尚不清楚。AD 患者的大脑功能下降与神经元葡萄糖利用率降低有关。在这里,我们测试了葡萄糖代谢的改善是否介导了 Wnt 在 AD 小鼠模型中的神经保护作用。APPswe/PS1dE9 转基因小鼠用于模拟 AD,使用穿心莲内酯或锂激活 Wnt 信号通路,并用细胞松弛素 B 阻断葡萄糖摄取。通过新物体识别和记忆灵活性测试评估认知功能。使用放射性示踪葡萄糖测定葡萄糖摄取和糖酵解速率。测定糖酵解关键酶如己糖激酶和磷酸果糖激酶的活性、三磷酸腺苷(ATP)/二磷酸腺苷(ADP)水平以及戊糖磷酸途径和葡萄糖-6-磷酸脱氢酶的活性。Wnt 激活剂显著改善了转基因小鼠的大脑葡萄糖利用和认知表现。Wnt 信号通过增加己糖激酶、磷酸果糖激酶和 AMP 激活蛋白激酶的表达和/或活性来增强葡萄糖代谢。抑制葡萄糖摄取部分消除了 Wnt 信号对学习/记忆的有益作用。Wnt 激活还增强了皮质和海马神经元以及源自 APPswe/PS1E9 转基因小鼠的脑片的葡萄糖代谢。综上所述,这些数据提供了证据,表明 Wnt 信号在 AD 小鼠模型中的神经保护作用至少部分是由于 Wnt 介导的神经元葡萄糖代谢改善所致。