Department of Biological Sciences, Vanderbilt University, Nashville, TN 37232, USA.
Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA.
Int J Mol Sci. 2018 Oct 6;19(10):3049. doi: 10.3390/ijms19103049.
RecG catalyzes reversal of stalled replication forks in response to replication stress in bacteria. The protein contains a fork recognition ("wedge") domain that binds branched DNA and a superfamily II (SF2) ATPase motor that drives translocation on double-stranded (ds)DNA. The mechanism by which the wedge and motor domains collaborate to catalyze fork reversal in RecG and analogous eukaryotic fork remodelers is unknown. Here, we used electron paramagnetic resonance (EPR) spectroscopy to probe conformational changes between the wedge and ATPase domains in response to fork DNA binding by RecG. Upon binding DNA, the ATPase-C lobe moves away from both the wedge and ATPase-N domains. This conformational change is consistent with a model of RecG fully engaged with a DNA fork substrate constructed from a crystal structure of RecG bound to a DNA junction together with recent cryo-electron microscopy (EM) structures of chromatin remodelers in complex with dsDNA. We show by mutational analysis that a conserved loop within the translocation in RecG (TRG) motif that was unstructured in the RecG crystal structure is essential for fork reversal and DNA-dependent conformational changes. Together, this work helps provide a more coherent model of fork binding and remodeling by RecG and related eukaryotic enzymes.
RecG 可催化停滞的复制叉逆转,以响应细菌中的复制应激。该蛋白包含一个分叉识别(“楔子”)结构域,可与分支 DNA 结合,以及一个超家族 II(SF2)ATP 酶马达,可驱动双链 (ds)DNA 上的易位。楔子和马达结构域协同催化 RecG 和类似的真核叉重塑酶中叉逆转的机制尚不清楚。在这里,我们使用电子顺磁共振(EPR)光谱来探测 RecG 响应叉 DNA 结合时楔子和 ATP 酶结构域之间的构象变化。结合 DNA 后,ATPase-C 结构域会远离楔子和 ATPase-N 结构域。这种构象变化与 RecG 与 DNA 叉底物完全结合的模型一致,该模型由与 DNA 连接结合的 RecG 晶体结构和最近与 dsDNA 结合的染色质重塑酶的冷冻电镜 (EM) 结构构建而成。我们通过突变分析表明,RecG 中易位(TRG)基序内的一个保守环在 RecG 晶体结构中未形成结构,对于叉逆转和 DNA 依赖性构象变化至关重要。总的来说,这项工作有助于提供更连贯的 RecG 和相关真核酶结合和重塑叉的模型。