Suppr超能文献

利用电子顺磁共振波谱学研究转录机制。

The use of EPR spectroscopy to study transcription mechanisms.

作者信息

Hofmann L, Mandato A, Saxena S, Ruthstein S

机构信息

Department of Chemistry and the Institute of Nanotechnology and Advanced Materials, Bar Ilan University, Ramat-Gan, Israel.

Department of Chemistry, University of Pittsburgh, Pittsburgh, PA USA.

出版信息

Biophys Rev. 2022 Oct 25;14(5):1141-1159. doi: 10.1007/s12551-022-01004-x. eCollection 2022 Oct.

Abstract

Electron paramagnetic resonance (EPR) spectroscopy has become a promising structural biology tool to resolve complex and dynamic biological mechanisms and . Here, we focus on the advantages of continuous wave (CW) and pulsed EPR distance measurements to resolve transcription processes and protein-DNA interaction. The wide range of spin-labeling approaches that can be used to follow structural changes in both protein and DNA render EPR a powerful method to study protein-DNA interactions and structure-function relationships in other macromolecular complexes. EPR-derived data goes well beyond static structural information and thus serves as the method of choice if dynamic insight is needed. Herein, we describe the conceptual details of the theory and the methodology and illustrate the use of EPR to study the protein-DNA interaction of the copper-sensitive transcription factor, CueR.

摘要

电子顺磁共振(EPR)光谱已成为一种很有前景的结构生物学工具,用于解析复杂且动态的生物学机制。在此,我们聚焦于连续波(CW)和脉冲EPR距离测量在解析转录过程和蛋白质 - DNA相互作用方面的优势。可用于追踪蛋白质和DNA结构变化的多种自旋标记方法,使EPR成为研究蛋白质 - DNA相互作用以及其他大分子复合物中结构 - 功能关系的有力方法。EPR衍生的数据远远超出静态结构信息,因此在需要动态洞察时是首选方法。在此,我们描述该理论和方法的概念细节,并举例说明EPR在研究铜敏感转录因子CueR的蛋白质 - DNA相互作用中的应用。

相似文献

1
The use of EPR spectroscopy to study transcription mechanisms.
Biophys Rev. 2022 Oct 25;14(5):1141-1159. doi: 10.1007/s12551-022-01004-x. eCollection 2022 Oct.
2
The Dynamic Plasticity of P. aeruginosa CueR Copper Transcription Factor upon Cofactor and DNA Binding.
Chembiochem. 2024 Aug 1;25(15):e202400279. doi: 10.1002/cbic.202400279. Epub 2024 Jul 5.
4
Distance measurements by continuous wave EPR spectroscopy to monitor protein folding.
Methods Mol Biol. 2011;752:73-96. doi: 10.1007/978-1-60327-223-0_6.
5
EPR Spectroscopy Provides New Insights into Complex Biological Reaction Mechanisms.
J Phys Chem B. 2022 Oct 6;126(39):7486-7494. doi: 10.1021/acs.jpcb.2c05235. Epub 2022 Sep 22.
6
Nitroxide spin labels and EPR spectroscopy: A powerful association for protein dynamics studies.
Biochim Biophys Acta Proteins Proteom. 2021 Jul;1869(7):140653. doi: 10.1016/j.bbapap.2021.140653. Epub 2021 Mar 20.
8
EPR Spectroscopy Detects Various Active State Conformations of the Transcriptional Regulator CueR.
Angew Chem Int Ed Engl. 2019 Mar 4;58(10):3053-3056. doi: 10.1002/anie.201810656. Epub 2019 Jan 16.

引用本文的文献

1
Exploring the Gating Mechanism of the Human Copper Transporter, hCtr1, Using EPR Spectroscopy.
Biomolecules. 2025 Jan 14;15(1):127. doi: 10.3390/biom15010127.
3
Tracking Disordered Extracellular Domains of Membrane Proteins in the Cell with Cu(II)-Based Spin Labels.
J Phys Chem B. 2024 Sep 19;128(37):8908-8914. doi: 10.1021/acs.jpcb.4c03676. Epub 2024 Sep 4.
4
Revealing the DNA Binding Modes of CsoR by EPR Spectroscopy.
ACS Omega. 2023 Oct 13;8(42):39886-39895. doi: 10.1021/acsomega.3c06336. eCollection 2023 Oct 24.
5
Biophysical Reviews: Publishing short and critical reviews written by key figures in the field.
Biophys Rev. 2022 Oct 20;14(5):1067-1074. doi: 10.1007/s12551-022-01009-6. eCollection 2022 Oct.

本文引用的文献

1
Pulse dipolar EPR for determining nanomolar binding affinities.
Chem Commun (Camb). 2022 Aug 4;58(63):8790-8793. doi: 10.1039/d2cc02360a.
3
An optimal acquisition scheme for Q-band EPR distance measurements using Cu-based protein labels.
Phys Chem Chem Phys. 2022 Jun 22;24(24):14727-14739. doi: 10.1039/d2cp01032a.
5
Cu(ii)-based DNA labeling identifies the structural link between transcriptional activation and termination in a metalloregulator.
Chem Sci. 2022 Jan 17;13(6):1693-1697. doi: 10.1039/d1sc06563g. eCollection 2022 Feb 9.
6
Long-range distance determination in fully deuterated RNA with pulsed EPR spectroscopy.
Biophys J. 2022 Jan 4;121(1):37-43. doi: 10.1016/j.bpj.2021.12.007. Epub 2021 Dec 8.
7
DEER and RIDME Measurements of the Nitroxide-Spin Labelled Copper-Bound Amine Oxidase Homodimer from Arthrobacter Globiformis.
Appl Magn Reson. 2021;52(8):995-1015. doi: 10.1007/s00723-021-01321-6. Epub 2021 Mar 29.
8
Benchmark Test and Guidelines for DEER/PELDOR Experiments on Nitroxide-Labeled Biomolecules.
J Am Chem Soc. 2021 Nov 3;143(43):17875-17890. doi: 10.1021/jacs.1c07371. Epub 2021 Oct 19.
9
DeerLab: a comprehensive software package for analyzing dipolar electron paramagnetic resonance spectroscopy data.
Magn Reson (Gott). 2020;1(2):209-224. doi: 10.5194/mr-1-209-2020. Epub 2020 Oct 1.
10
dHis-troying Barriers: Deuteration Provides a Pathway to Increase Sensitivity and Accessible Distances for Cu Labels.
J Phys Chem Lett. 2021 May 20;12(19):4681-4685. doi: 10.1021/acs.jpclett.1c01002. Epub 2021 May 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验