Suppr超能文献

基于决策树的元策略提高了紊乱预测的准确性,并鉴定了结合基序内部的新型紊乱残基。

Decision-Tree Based Meta-Strategy Improved Accuracy of Disorder Prediction and Identified Novel Disordered Residues Inside Binding Motifs.

机构信息

Department of Cell Biology, Microbiology and Molecular Biology, School of Natural Sciences and Mathematics, College of Arts and Sciences, University of South Florida, Tampa, FL 33620, USA.

出版信息

Int J Mol Sci. 2018 Oct 7;19(10):3052. doi: 10.3390/ijms19103052.

Abstract

Using computational techniques to identify intrinsically disordered residues is practical and effective in biological studies. Therefore, designing novel high-accuracy strategies is always preferable when existing strategies have a lot of room for improvement. Among many possibilities, a meta-strategy that integrates the results of multiple individual predictors has been broadly used to improve the overall performance of predictors. Nonetheless, a simple and direct integration of individual predictors may not effectively improve the performance. In this project, dual-threshold two-step significance voting and neural networks were used to integrate the predictive results of four individual predictors, including: DisEMBL, IUPred, VSL2, and ESpritz. The new meta-strategy has improved the prediction performance of intrinsically disordered residues significantly, compared to all four individual predictors and another four recently-designed predictors. The improvement was validated using five-fold cross-validation and in independent test datasets.

摘要

利用计算技术来识别固有无序残基在生物研究中是切实可行且有效的。因此,当现有的策略有很大的改进空间时,设计新颖的高精度策略总是更好的选择。在许多可能性中,一种整合多个个体预测器结果的元策略已被广泛用于提高预测器的整体性能。然而,个体预测器的简单直接整合可能无法有效地提高性能。在这个项目中,双阈值两步显著性投票和神经网络被用于整合四个个体预测器的预测结果,包括:DisEMBL、IUPred、VSL2 和 Espritz。与所有四个个体预测器以及另外四个最近设计的预测器相比,新的元策略显著提高了固有无序残基的预测性能。该改进通过五重交叉验证和独立测试数据集得到了验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f6f2/6213717/6b550a235e4e/ijms-19-03052-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验