Tu Huaisheng, Liu Haotian, Pan Tuqiang, Xie Wuping, Ma Zihao, Zhang Fan, Xu Pengbai, Wu Leiming, Xu Ou, Xu Yi, Qin Yuwen
Key Laboratory of Photonic Technology for Integrated Sensing and Communication, Ministry of Education, Guangdong University of Technology, Guangzhou, 510006, China.
Guangdong Provincial Key Laboratory of Information Photonics Technology, Guangdong University of Technology, Guangzhou, 510006, China.
Nat Commun. 2025 Feb 5;16(1):1369. doi: 10.1038/s41467-025-56522-5.
Supervised learning, a popular tool in modern science and technology, thrives on huge amounts of labeled data. Physics-enhanced deep neural networks offer an effective solution to alleviate the data burden by incorporating an analytical model that interprets the underlying physical processes. However, it completely fails in tackling systems without analytical solution, where wave scattering systems with multiple input multiple output are typical examples. Herein, we propose a concept of deep empirical neural network (DENN) that is a hybridization of a deep neural network and an empirical model, which enables seeing through an opaque scattering medium in an untrained manner. The DENN does not rely on labeled data, all while delivering as high as 58% improvement in fidelity compared with the supervised learning using 30000 data pairs for achieving the same goal of optical phase retrieval. The DENN might shed new light on the applications of deep learning in physics, information science, biology, chemistry and beyond.
监督学习是现代科技中一种流行的工具,它依赖大量的标注数据得以蓬勃发展。物理增强型深度神经网络通过纳入一个能解释潜在物理过程的分析模型,为减轻数据负担提供了一种有效解决方案。然而,在处理没有解析解的系统时,它完全失效,具有多输入多输出的波散射系统就是典型例子。在此,我们提出了深度经验神经网络(DENN)的概念,它是深度神经网络与经验模型的结合,能够以未训练的方式看穿不透明散射介质。DENN不依赖标注数据,同时在实现相同光学相位检索目标时,与使用30000个数据对的监督学习相比,保真度提高了58%。DENN可能会为深度学习在物理、信息科学、生物学、化学及其他领域的应用带来新的启示。