Centre for Neuroendocrinology and Department of Physiology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand.
Endocrinology. 2018 Nov 1;159(11):3822-3833. doi: 10.1210/en.2018-00594.
Developments in optical imaging and optogenetics are transforming the functional investigation of neuronal networks throughout the brain. Recent studies in the neuroendocrine field have used genetic mouse models combined with a variety of light-activated optical tools as well as GCaMP calcium imaging to interrogate the neural circuitry controlling hormone secretion. The present review highlights the benefits and caveats of these approaches for undertaking both acute brain slice and functional studies in vivo. We focus on the use of channelrhodopsin and the inhibitory optogenetic tools, archaerhodopsin and halorhodopsin, in addition to GCaMP imaging of individual cells in vitro and neural populations in vivo using fiber photometry. We also address issues around the use of genetic vs viral delivery of encoded proteins to specific Cre-expressing cell populations, their quantification, and the use of conscious vs anesthetized animal models. To date, optogenetics and GCaMP imaging have proven useful in dissecting functional circuitry within the brain and are likely to become essential investigative tools for deciphering the different neural networks controlling hormone secretion.
光学成像和光遗传学的发展正在改变整个大脑中神经元网络的功能研究。神经内分泌领域的最近研究使用了遗传小鼠模型,结合各种光激活光学工具以及 GCaMP 钙成像,来研究控制激素分泌的神经回路。本文重点介绍了这些方法在进行急性脑切片和体内功能研究中的优势和注意事项。我们专注于使用通道视紫红质和抑制性光遗传学工具,包括 archaeerhodopsin 和 halorhodopsin,以及体外单个细胞和体内神经群体的 GCaMP 成像,使用光纤光度测定法。我们还解决了将编码蛋白的基因传递与特定 Cre 表达细胞群体的问题,包括它们的定量以及使用清醒或麻醉动物模型的问题。迄今为止,光遗传学和 GCaMP 成像已被证明可用于剖析大脑中的功能回路,并且可能成为解析控制激素分泌的不同神经网络的重要研究工具。