Department of Electrical and Computer Engineering, Isfahan University of Technology, 84156-83111 Isfahan, Iran.
Biologically Inspired Sensors and Actuators (BioSA), Department of Electrical Engineering and Computer Science (EECS), Lassonde School of Engineering, York University, Toronto, ON M3J 1P3, Canada.
Sensors (Basel). 2018 Oct 9;18(10):3370. doi: 10.3390/s18103370.
This paper proposes a novel charge-based Complementary Metal Oxide Semiconductor (CMOS) capacitive sensor for life science applications. Charge-based capacitance measurement (CBCM) has significantly attracted the attention of researchers for the design and implementation of high-precision CMOS capacitive biosensors. A conventional core-CBCM capacitive sensor consists of a capacitance-to-voltage converter (CVC), followed by a voltage-to-digital converter. In spite of their high accuracy and low complexity, their input dynamic range (IDR) limits the advantages of core-CBCM capacitive sensors for most biological applications, including cellular monitoring. In this paper, after a brief review of core-CBCM capacitive sensors, we address this challenge by proposing a new current-mode core-CBCM design. In this design, we combine CBCM and current-controlled oscillator (CCO) structures to improve the IDR of the capacitive readout circuit. Using a 0.18 μm CMOS process, we demonstrate and discuss the Cadence simulation results to demonstrate the high performance of the proposed circuitry. Based on these results, the proposed circuit offers an IDR ranging from 873 aF to 70 fF with a resolution of about 10 aF. This CMOS capacitive sensor with such a wide IDR can be employed for monitoring cellular and molecular activities that are suitable for biological research and clinical purposes.
本文提出了一种用于生命科学应用的新型基于电荷的互补金属氧化物半导体(CMOS)电容传感器。基于电荷的电容测量(CBCM)在设计和实现高精度 CMOS 电容生物传感器方面引起了研究人员的极大关注。传统的核心 CBCM 电容传感器由电容-电压转换器(CVC)和电压-数字转换器组成。尽管它们具有高精度和低复杂性,但它们的输入动态范围(IDR)限制了核心 CBCM 电容传感器在大多数生物应用中的优势,包括细胞监测。在本文中,在简要回顾核心 CBCM 电容传感器之后,我们通过提出一种新的电流模式核心 CBCM 设计来解决这一挑战。在该设计中,我们结合 CBCM 和电流控制振荡器(CCO)结构来提高电容读出电路的 IDR。使用 0.18μm CMOS 工艺,我们演示并讨论了 Cadence 仿真结果,以展示所提出电路的高性能。基于这些结果,所提出的电路提供了 873aF 至 70fF 的 IDR,分辨率约为 10aF。这种具有如此宽 IDR 的 CMOS 电容传感器可用于监测细胞和分子活动,适用于生物研究和临床用途。