Suppr超能文献

面向生命科学应用的高通量核心-CBCM CMOS 电容传感器:一种用于高动态范围电路的新型电流模式。

Toward High Throughput Core-CBCM CMOS Capacitive Sensors for Life Science Applications: A Novel Current-Mode for High Dynamic Range Circuitry.

机构信息

Department of Electrical and Computer Engineering, Isfahan University of Technology, 84156-83111 Isfahan, Iran.

Biologically Inspired Sensors and Actuators (BioSA), Department of Electrical Engineering and Computer Science (EECS), Lassonde School of Engineering, York University, Toronto, ON M3J 1P3, Canada.

出版信息

Sensors (Basel). 2018 Oct 9;18(10):3370. doi: 10.3390/s18103370.

Abstract

This paper proposes a novel charge-based Complementary Metal Oxide Semiconductor (CMOS) capacitive sensor for life science applications. Charge-based capacitance measurement (CBCM) has significantly attracted the attention of researchers for the design and implementation of high-precision CMOS capacitive biosensors. A conventional core-CBCM capacitive sensor consists of a capacitance-to-voltage converter (CVC), followed by a voltage-to-digital converter. In spite of their high accuracy and low complexity, their input dynamic range (IDR) limits the advantages of core-CBCM capacitive sensors for most biological applications, including cellular monitoring. In this paper, after a brief review of core-CBCM capacitive sensors, we address this challenge by proposing a new current-mode core-CBCM design. In this design, we combine CBCM and current-controlled oscillator (CCO) structures to improve the IDR of the capacitive readout circuit. Using a 0.18 μm CMOS process, we demonstrate and discuss the Cadence simulation results to demonstrate the high performance of the proposed circuitry. Based on these results, the proposed circuit offers an IDR ranging from 873 aF to 70 fF with a resolution of about 10 aF. This CMOS capacitive sensor with such a wide IDR can be employed for monitoring cellular and molecular activities that are suitable for biological research and clinical purposes.

摘要

本文提出了一种用于生命科学应用的新型基于电荷的互补金属氧化物半导体(CMOS)电容传感器。基于电荷的电容测量(CBCM)在设计和实现高精度 CMOS 电容生物传感器方面引起了研究人员的极大关注。传统的核心 CBCM 电容传感器由电容-电压转换器(CVC)和电压-数字转换器组成。尽管它们具有高精度和低复杂性,但它们的输入动态范围(IDR)限制了核心 CBCM 电容传感器在大多数生物应用中的优势,包括细胞监测。在本文中,在简要回顾核心 CBCM 电容传感器之后,我们通过提出一种新的电流模式核心 CBCM 设计来解决这一挑战。在该设计中,我们结合 CBCM 和电流控制振荡器(CCO)结构来提高电容读出电路的 IDR。使用 0.18μm CMOS 工艺,我们演示并讨论了 Cadence 仿真结果,以展示所提出电路的高性能。基于这些结果,所提出的电路提供了 873aF 至 70fF 的 IDR,分辨率约为 10aF。这种具有如此宽 IDR 的 CMOS 电容传感器可用于监测细胞和分子活动,适用于生物研究和临床用途。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc1b/6210700/02d2ff48cbbc/sensors-18-03370-g001.jpg

相似文献

2
Wide Input Dynamic Range Fully Integrated Capacitive Sensor for Life Science Applications.
IEEE Trans Biomed Circuits Syst. 2021 Apr;15(2):339-350. doi: 10.1109/TBCAS.2021.3075348. Epub 2021 May 25.
3
A New Fully Differential CMOS Capacitance to Digital Converter for Lab-on-Chip Applications.
IEEE Trans Biomed Circuits Syst. 2015 Jun;9(3):353-61. doi: 10.1109/TBCAS.2014.2336596. Epub 2014 Aug 11.
4
A High Dynamic Range Dual 8×16 Capacitive Sensor Array for Life Science Applications.
IEEE Trans Biomed Circuits Syst. 2022 Dec;16(6):1191-1203. doi: 10.1109/TBCAS.2022.3230668. Epub 2023 Feb 14.
5
Oral Cells-On-Chip: Design, Modeling and Experimental Results.
Bioengineering (Basel). 2022 May 19;9(5):218. doi: 10.3390/bioengineering9050218.
7
A MEMS Interface IC With Low-Power and Wide-Range Frequency-to-Voltage Converter for Biomedical Applications.
IEEE Trans Biomed Circuits Syst. 2016 Apr;10(2):455-66. doi: 10.1109/TBCAS.2015.2435256.
8
Capacitive micro pressure sensor integrated with a ring oscillator circuit on chip.
Sensors (Basel). 2009;9(12):10158-70. doi: 10.3390/s91210158. Epub 2009 Dec 14.
9
A VCO-Based CMOS Readout Circuit for Capacitive MEMS Microphones.
Sensors (Basel). 2019 Sep 24;19(19):4126. doi: 10.3390/s19194126.
10
A Multidisciplinary Approach toward CMOS Capacitive Sensor Array for Droplet Analysis.
Micromachines (Basel). 2024 Feb 1;15(2):232. doi: 10.3390/mi15020232.

引用本文的文献

1
A Multidisciplinary Approach toward CMOS Capacitive Sensor Array for Droplet Analysis.
Micromachines (Basel). 2024 Feb 1;15(2):232. doi: 10.3390/mi15020232.
2
Measuring and modeling macrophage proliferation in a lab-on-CMOS capacitance sensing microsystem.
Front Bioeng Biotechnol. 2023 May 12;11:1159004. doi: 10.3389/fbioe.2023.1159004. eCollection 2023.
3
A Time-Based Electronic Front-End for a Capacitive Particle Matter Detector.
Sensors (Basel). 2021 Mar 6;21(5):1840. doi: 10.3390/s21051840.

本文引用的文献

1
A fully electronic microfabricated gas chromatograph with complementary capacitive detectors for indoor pollutants.
Microsyst Nanoeng. 2016 Feb 29;2:15049. doi: 10.1038/micronano.2015.49. eCollection 2016.
2
A CMOS Pixelated Nanocapacitor Biosensor Platform for High-Frequency Impedance Spectroscopy and Imaging.
IEEE Trans Biomed Circuits Syst. 2018 Dec;12(6):1369-1382. doi: 10.1109/TBCAS.2018.2861558. Epub 2018 Jul 30.
3
Real-Time Measurements of Cell Proliferation Using a Lab-on-CMOS Capacitance Sensor Array.
IEEE Trans Biomed Circuits Syst. 2018 Jun;12(3):510-520. doi: 10.1109/TBCAS.2018.2821060.
4
Epoxy Chip-in-Carrier Integration and Screen-Printed Metalization for Multichannel Microfluidic Lab-on-CMOS Microsystems.
IEEE Trans Biomed Circuits Syst. 2018 Apr;12(2):416-425. doi: 10.1109/TBCAS.2018.2797063.
5
Two Solutions of Soil Moisture Sensing with RFID for Landslide Monitoring.
Sensors (Basel). 2018 Feb 3;18(2):452. doi: 10.3390/s18020452.
7
Microfluidic devices fabricated using fast wafer-scale LED-lithography patterning.
Biomicrofluidics. 2017 Feb 17;11(1):014113. doi: 10.1063/1.4976690. eCollection 2017 Jan.
8
Towards High Throughput Cell Growth Screening: A New CMOS 8 × 8 Biosensor Array for Life Science Applications.
IEEE Trans Biomed Circuits Syst. 2017 Apr;11(2):380-391. doi: 10.1109/TBCAS.2016.2593639. Epub 2016 Nov 14.
9
System-on-Chip Considerations for Heterogeneous Integration of CMOS and Fluidic Bio-Interfaces.
IEEE Trans Biomed Circuits Syst. 2016 Dec;10(6):1129-1142. doi: 10.1109/TBCAS.2016.2522402.
10
Highly sensitive dual mode electrochemical platform for microRNA detection.
Sci Rep. 2016 Nov 8;6:36719. doi: 10.1038/srep36719.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验