一种新的癌症监测研究的年龄-时期-队列模型。

A new age-period-cohort model for cancer surveillance research.

机构信息

National Cancer Institute, Division of Cancer Epidemiology and Genetics, Biostatistics Branch, Bethesda, Maryland USA.

出版信息

Stat Methods Med Res. 2019 Oct-Nov;28(10-11):3363-3391. doi: 10.1177/0962280218801121. Epub 2018 Oct 11.

Abstract

We develop a new age-period-cohort model for cancer surveillance research; the theory and methods are broadly applicable. In the new model, cohort deviations are weighted to account for the variable number of periods that each cohort is observed. Weighting ensures that the fitted rates can be naturally expressed as a function of age × a function of period × a function of cohort. Furthermore, the age, period, and cohort deviations are split into orthogonal quadratic components plus higher-order terms. These decompositions enable powerful combination significance tests of first- and second-order age, period, and cohort effects. The regression parameters of the orthogonal quadratic polynomials (global curvatures) quantify how fast on average the trends in the rates are changing. Importantly, the global curvature for cohort determines the least squares slope of the expected annual percentage changes by age group versus age (local drifts), thereby providing a powerful one-degree-of-freedom test of age-period interactions. We introduce new estimable functions, including age gradients that quantify the rate of change of the longitudinal and cross-sectional age curves at each attained age, and gradient shifts that quantify how the cross-sectional age trend varies by period. We illustrate the new model using nationally representative multiple myeloma incidence. Comprehensive proofs are given in technical appendices. We provide an R package.

摘要

我们开发了一种新的癌症监测研究的年龄-时期-队列模型;该理论和方法具有广泛的适用性。在新模型中,对队列偏差进行加权,以考虑每个队列观察到的时期数量的变化。加权确保拟合率可以自然地表示为年龄的函数×时期的函数×队列的函数。此外,年龄、时期和队列偏差被分解为正交二次分量和高阶项。这些分解使对一阶和二阶年龄、时期和队列效应的强大组合显著性检验成为可能。正交二次多项式的回归参数(全局曲率)量化了趋势的平均变化速度。重要的是,队列的全局曲率决定了按年龄组与年龄的预期年度百分比变化的最小二乘斜率(局部漂移),从而提供了对年龄-时期相互作用的强有力的单自由度检验。我们引入了新的可估计函数,包括年龄梯度,它量化了每个达到年龄的纵向和横截面年龄曲线的变化率,以及梯度变化,它量化了横截面年龄趋势随时期的变化情况。我们使用全国代表性的多发性骨髓瘤发病率来演示新模型。详细证明见技术附录。我们提供了一个 R 包。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索