Suppr超能文献

使用随机效应评估年龄-时期-队列模型参数异质性的统一方法。

A unified approach for assessing heterogeneity in age-period-cohort model parameters using random effects.

机构信息

1 Radiation Epidemiology Branch, National Cancer Institute, USA.

2 Biostatistics Branch, National Cancer Institute, USA.

出版信息

Stat Methods Med Res. 2019 Jan;28(1):20-34. doi: 10.1177/0962280217713033. Epub 2017 Jun 7.

Abstract

Age-period-cohort models are a popular tool for studying population-level rates; for example, trends in cancer incidence and mortality. Age-period-cohort models decompose observed trends into age effects that correlate with natural history, period effects that reveal factors impacting all ages simultaneously (e.g. innovations in screening), and birth cohort effects that reflect differential risk exposures that vary across birth years. Methodology for the analysis of multiple population strata (e.g. ethnicity, cancer registry) within the age-period-cohort framework has not been thoroughly investigated. Here, we outline a general model for characterizing differences in age-period-cohort model parameters for a potentially large number of strata. Our model incorporates stratum-specific random effects for the intercept, the longitudinal age trend, and the model-based estimate of annual percent change (net drift), thereby enabling a comprehensive analysis of heterogeneity. We also extend the standard model to include quadratic terms for age, period, and cohort, along with the corresponding random effects, which quantify possible stratum-specific departures from global curvature. We illustrate the utility of our model with an application to metastatic prostate cancer incidence (2004-2013) in non-Hispanic white and black men, using 17 population-based cancer registries in the Surveillance, Epidemiology, and End Results Program.

摘要

年龄-时期-队列模型是研究人群水平发病率的常用工具;例如,癌症发病率和死亡率的趋势。年龄-时期-队列模型将观察到的趋势分解为与自然史相关的年龄效应、同时影响所有年龄的时期效应(例如筛查方面的创新)以及反映不同出生年份风险暴露差异的出生队列效应。在年龄-时期-队列框架内分析多个人群分层(例如,种族、癌症登记处)的方法尚未得到彻底研究。在这里,我们概述了一种用于描述潜在大量分层的年龄-时期-队列模型参数差异的通用模型。我们的模型为截距、纵向年龄趋势和基于模型的年百分变化估计值(净漂移)纳入了分层特定的随机效应,从而能够全面分析异质性。我们还将标准模型扩展到包括年龄、时期和队列的二次项以及相应的随机效应,这些随机效应可以量化可能存在的特定于分层的全局曲率偏离。我们使用监测、流行病学和最终结果计划中的 17 个基于人群的癌症登记处 2004-2013 年非西班牙裔白人和黑人男性转移性前列腺癌发病率的应用来说明我们模型的实用性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验