比较年龄-时期-队列分析。

Comparative age-period-cohort analysis.

机构信息

Division of Cancer Epidemiology and Genetics, Biostatistics Branch, National Cancer Institute, NCI Shady Grove, Room 7E-130, 9609 Medical Center Drive, Bethesda, MD, 20892, USA.

Cancer Control Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.

出版信息

BMC Med Res Methodol. 2023 Oct 18;23(1):238. doi: 10.1186/s12874-023-02039-8.

Abstract

BACKGROUND

Cancer surveillance researchers analyze incidence or mortality rates jointly indexed by age group and calendar period using age-period-cohort models. Many studies consider age- and period-specific rates in two or more strata defined by sex, race/ethnicity, etc. A comprehensive characterization of trends and patterns within each stratum can be obtained using age-period-cohort (APC) estimable functions (EF). However, currently available approaches for joint analysis and synthesis of EF are limited.

METHODS

We develop a new method called Comparative Age-Period-Cohort Analysis to quantify similarities and differences of EF across strata. Comparative Analysis identifies whether the stratum-specific hazard rates are proportional by age, period, or cohort.

RESULTS

Proportionality imposes natural constraints on the EF that can be exploited to gain efficiency and simplify the interpretation of the data. Comparative Analysis can also identify differences or diversity in proportional relationships between subsets of strata ("pattern heterogeneity"). We present three examples using cancer incidence from the United States Surveillance, Epidemiology, and End Results Program: non-malignant meningioma by sex; multiple myeloma among men stratified by race/ethnicity; and in situ melanoma by anatomic site among white women.

CONCLUSIONS

For studies of cancer rates with from two through to around 10 strata, which covers many outstanding questions in cancer surveillance research, our new method provides a comprehensive, coherent, and reproducible approach for joint analysis and synthesis of age-period-cohort estimable functions.

摘要

背景

癌症监测研究人员使用年龄-时期-队列模型联合分析按年龄组和时期索引的发病率或死亡率。许多研究考虑了性别、种族/民族等定义的两个或更多层中的年龄和时期特异性比率。使用年龄-时期-队列(APC)可评估函数(EF)可以全面描述每个层内的趋势和模式。但是,目前联合分析和综合 EF 的方法有限。

方法

我们开发了一种称为比较年龄-时期-队列分析的新方法,用于量化 EF 在各层之间的相似性和差异。比较分析确定特定于层的危险率是否按年龄、时期或队列成比例。

结果

比例性对 EF 施加了自然约束,可以利用这些约束来提高效率并简化数据的解释。比较分析还可以识别子集之间的比例关系的差异或多样性(“模式异质性”)。我们使用美国监测、流行病学和最终结果计划中的癌症发病率提供了三个示例:按性别划分的非恶性脑膜瘤;按种族/民族划分的男性多发性骨髓瘤;以及白种女性中解剖部位的原位黑色素瘤。

结论

对于具有两个至十个左右层的癌症率研究,涵盖了癌症监测研究中的许多悬而未决的问题,我们的新方法为联合分析和综合年龄-时期-队列可评估函数提供了一种全面、连贯且可重复的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f53f/10585891/7f94ae3ab26d/12874_2023_2039_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索