Suppr超能文献

可扩展且稳健的自发立体脑电图数据张量分解。

Scalable and Robust Tensor Decomposition of Spontaneous Stereotactic EEG Data.

出版信息

IEEE Trans Biomed Eng. 2019 Jun;66(6):1549-1558. doi: 10.1109/TBME.2018.2875467. Epub 2018 Oct 11.

Abstract

OBJECTIVE

Identification of networks from resting brain signals is an important step in understanding the dynamics of spontaneous brain activity. We approach this problem using a tensor-based model.

METHODS

We develop a rank-recursive scalable and robust sequential canonical polyadic decomposition (SRSCPD) framework to decompose a tensor into several rank-1 components. Robustness and scalability are achieved using a warm start for each rank based on the results from the previous rank.

RESULTS

In simulations we show that SRSCPD consistently outperforms the multi-start alternating least square (ALS) algorithm over a range of ranks and signal-to-noise ratios (SNRs), with lower computation cost. When applying SRSCPD to resting in-vivo stereotactic EEG (SEEG) data from two subjects with epilepsy, we found components corresponding to default mode and motor networks in both subjects. These components were also highly consistent within subject between two sessions recorded several hours apart. Similar components were not obtained using the conventional ALS algorithm.

CONCLUSION

Consistent brain networks and their dynamic behaviors were identified from resting SEEG data using SRSCPD.

SIGNIFICANCE

SRSCPD is scalable to large datasets and therefore a promising tool for identification of brain networks in long recordings from single subjects.

摘要

目的

从静息态脑信号中识别网络是理解自发脑活动动力学的重要步骤。我们使用基于张量的模型来解决这个问题。

方法

我们开发了一种基于秩递归可扩展和鲁棒序贯典型多胞分解(SRSCPD)框架的方法,将张量分解为几个秩-1 分量。通过基于前一阶的结果为每一阶进行热启动,实现了稳健性和可扩展性。

结果

在模拟中,我们表明 SRSCPD 在一系列阶数和信噪比(SNR)下始终优于多起点交替最小二乘法(ALS)算法,计算成本更低。当将 SRSCPD 应用于来自两名癫痫患者的静息立体脑电图(SEEG)数据时,我们在两名患者中均发现了与默认模式和运动网络对应的成分。这些成分在两次记录之间相隔数小时的两个会话中在受试者内也非常一致。使用传统的 ALS 算法则无法获得类似的成分。

结论

使用 SRSCPD 可以从静息 SEEG 数据中识别出一致的大脑网络及其动态行为。

意义

SRSCPD 可扩展到大型数据集,因此是从单个受试者的长记录中识别大脑网络的有前途的工具。

相似文献

1
Scalable and Robust Tensor Decomposition of Spontaneous Stereotactic EEG Data.
IEEE Trans Biomed Eng. 2019 Jun;66(6):1549-1558. doi: 10.1109/TBME.2018.2875467. Epub 2018 Oct 11.
2
Tensor decomposition of EEG signals: a brief review.
J Neurosci Methods. 2015 Jun 15;248:59-69. doi: 10.1016/j.jneumeth.2015.03.018. Epub 2015 Apr 1.
4
Group analysis of ongoing EEG data based on fast double-coupled nonnegative tensor decomposition.
J Neurosci Methods. 2020 Jan 15;330:108502. doi: 10.1016/j.jneumeth.2019.108502. Epub 2019 Nov 13.
5
Robust brain network identification from multi-subject asynchronous fMRI data.
Neuroimage. 2021 Feb 15;227:117615. doi: 10.1016/j.neuroimage.2020.117615. Epub 2020 Dec 8.
6
A Tensor Decomposition-Based Approach for Detecting Dynamic Network States From EEG.
IEEE Trans Biomed Eng. 2017 Jan;64(1):225-237. doi: 10.1109/TBME.2016.2553960. Epub 2016 Apr 13.
7
EEG extended source localization: tensor-based vs. conventional methods.
Neuroimage. 2014 Aug 1;96:143-57. doi: 10.1016/j.neuroimage.2014.03.043. Epub 2014 Mar 22.
8
Assignment of Empirical Mode Decomposition Components and Its Application to Biomedical Signals.
Methods Inf Med. 2015;54(5):461-73. doi: 10.3414/ME14-02-0024. Epub 2015 Sep 30.
9
Denoising depth EEG signals during DBS using filtering and subspace decomposition.
IEEE Trans Biomed Eng. 2013 Oct;60(10):2686-95. doi: 10.1109/TBME.2013.2262212. Epub 2013 May 7.
10
Channel selection and classification of electroencephalogram signals: an artificial neural network and genetic algorithm-based approach.
Artif Intell Med. 2012 Jun;55(2):117-26. doi: 10.1016/j.artmed.2012.02.001. Epub 2012 Apr 12.

引用本文的文献

1
Identification of overlapping and interacting networks reveals intrinsic spatiotemporal organization of the human brain.
Neuroimage. 2023 Apr 15;270:119944. doi: 10.1016/j.neuroimage.2023.119944. Epub 2023 Feb 19.
2
Mapping the subcortical connectivity of the human default mode network.
Neuroimage. 2021 Dec 15;245:118758. doi: 10.1016/j.neuroimage.2021.118758. Epub 2021 Nov 25.
3
A NETWORK-BASED APPROACH TO STUDY OF ADHD USING TENSOR DECOMPOSITION OF RESTING STATE FMRI DATA.
Proc IEEE Int Symp Biomed Imaging. 2020 Apr;2020:544-548. doi: 10.1109/isbi45749.2020.9098584. Epub 2020 May 22.
4
Robust brain network identification from multi-subject asynchronous fMRI data.
Neuroimage. 2021 Feb 15;227:117615. doi: 10.1016/j.neuroimage.2020.117615. Epub 2020 Dec 8.

本文引用的文献

1
The dynamic functional connectome: State-of-the-art and perspectives.
Neuroimage. 2017 Oct 15;160:41-54. doi: 10.1016/j.neuroimage.2016.12.061. Epub 2016 Dec 26.
3
Tensor decomposition of EEG signals: a brief review.
J Neurosci Methods. 2015 Jun 15;248:59-69. doi: 10.1016/j.jneumeth.2015.03.018. Epub 2015 Apr 1.
4
Stereotactic placement of depth electrodes in medically intractable epilepsy.
J Neurosurg. 2014 Mar;120(3):639-44. doi: 10.3171/2013.11.JNS13635. Epub 2014 Jan 3.
5
Dynamic functional connectivity: promise, issues, and interpretations.
Neuroimage. 2013 Oct 15;80:360-78. doi: 10.1016/j.neuroimage.2013.05.079. Epub 2013 May 24.
7
Single trial ERP reading based on parallel factor analysis.
Psychophysiology. 2013 Jan;50(1):97-110. doi: 10.1111/j.1469-8986.2012.01405.x. Epub 2012 Nov 14.
8
Periodic changes in fMRI connectivity.
Neuroimage. 2012 Nov 15;63(3):1712-9. doi: 10.1016/j.neuroimage.2012.06.078. Epub 2012 Jul 14.
9
Functional and effective connectivity: a review.
Brain Connect. 2011;1(1):13-36. doi: 10.1089/brain.2011.0008.
10
Rank-Constrained Solutions to Linear Matrix Equations Using PowerFactorization.
IEEE Signal Process Lett. 2009;16(7):584-587. doi: 10.1109/LSP.2009.2018223.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验