Suppr超能文献

基于嗅觉感官评价的特征挖掘方法的气味指纹分析。

Odor Fingerprint Analysis Using Feature Mining Method Based on Olfactory Sensory Evaluation.

机构信息

Advanced Sensor Technology Institute, College of Automation Engineering, Northeast Electric Power University, Jilin 132012, China.

Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA.

出版信息

Sensors (Basel). 2018 Oct 10;18(10):3387. doi: 10.3390/s18103387.

Abstract

In this paper, we aim to use odor fingerprint analysis to identify and detect various odors. We obtained the olfactory sensory evaluation of eight different brands of Chinese liquor by a lab-developed intelligent nose. From the respective combination of the time domain and frequency domain, we extract features to reflect the samples comprehensively. However, the extracted feature combined time domain and frequency domain will bring redundant information that affects performance. Therefore, we proposed data by Principal Component Analysis (PCA) and Variable Importance Projection (VIP) to delete redundant information to construct a more precise odor fingerprint. Then, Random Forest (RF) and Probabilistic Neural Network (PNN) were built based on the above. Results showed that the VIP-based models achieved better classification performance than PCA-based models. In addition, the peak performance (92.5%) of the VIP-RF model had a higher classification rate than the VIP-PNN model (90%). In conclusion, odor fingerprint analysis using a feature mining method based on the olfactory sensory evaluation can be applied to monitor product quality in the actual process of industrialization.

摘要

在本文中,我们旨在使用气味指纹分析来识别和检测各种气味。我们通过实验室开发的智能鼻子获得了八种不同品牌的中国白酒的嗅觉感官评估。从各自的时域和频域组合中,我们提取特征以全面反映样本。然而,提取的特征结合时域和频域会带来影响性能的冗余信息。因此,我们提出了基于主成分分析(PCA)和变量重要性投影(VIP)的数据删除冗余信息,构建更精确的气味指纹。然后,基于上述内容构建随机森林(RF)和概率神经网络(PNN)。结果表明,基于 VIP 的模型比基于 PCA 的模型具有更好的分类性能。此外,VIP-RF 模型的峰值性能(92.5%)比 VIP-PNN 模型(90%)具有更高的分类率。总之,使用基于嗅觉感官评估的特征挖掘方法的气味指纹分析可应用于工业化实际过程中的产品质量监测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff9c/6210366/ac9a8e436bd1/sensors-18-03387-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验