The Institute of Bioengineering (IBI), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
The Institute of Bioengineering (IBI), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
Trends Genet. 2018 Dec;34(12):915-926. doi: 10.1016/j.tig.2018.09.005. Epub 2018 Oct 8.
Circadian rhythms in physiology and behavior evolved to resonate with daily cycles in the external environment. In mammals, organs orchestrate temporal physiology over the 24-h day, which requires extensive gene expression rhythms targeted to the right tissue. Although a core set of gene products oscillates across virtually all cell types, gene expression profiling across tissues over the 24-h day showed that rhythmic gene expression programs are tissue specific. We highlight recent progress in uncovering how the circadian clock interweaves with tissue-specific gene regulatory networks involving functions such as xenobiotic metabolism, glucose homeostasis, and sleep. This progress hinges on not only comprehensive experimental approaches but also computational methods for multivariate analysis of periodic functional genomics data. We emphasize dynamic chromatin interactions as a novel regulatory layer underlying circadian gene transcription, core clock functions, and ultimately behavior. Finally, we discuss perspectives on extending the knowledge of the circadian clock in animals to human chronobiology.
生理和行为的昼夜节律是为了与外部环境的日常周期相协调而进化的。在哺乳动物中,器官在 24 小时内协调时间生理学,这需要针对正确组织的广泛基因表达节律。尽管几乎所有细胞类型中都存在一组核心基因产物的振荡,但在 24 小时内对组织进行的基因表达谱分析表明,节律基因表达程序是组织特异性的。我们重点介绍了最近在揭示昼夜节律钟如何与涉及异源生物代谢、葡萄糖稳态和睡眠等功能的组织特异性基因调控网络交织在一起方面的进展。这一进展不仅取决于全面的实验方法,还取决于用于周期性功能基因组学数据的多元分析的计算方法。我们强调动态染色质相互作用作为昼夜节律基因转录、核心时钟功能以及最终行为的一个新的调控层。最后,我们讨论了将动物昼夜节律钟的知识扩展到人类生物钟的观点。