Suppr超能文献

将组学数据整合到基因组规模的代谢网络模型中:原理与挑战。

Integrating -omics data into genome-scale metabolic network models: principles and challenges.

机构信息

Department of Biosystems Science and Engineering and SIB Swiss Institute of Bioinformatics, ETH Zurich, Basel 4058, Switzerland.

PhD Program Systems Biology, Life Science Zurich Graduate School, Zurich, Switzerland.

出版信息

Essays Biochem. 2018 Oct 26;62(4):563-574. doi: 10.1042/EBC20180011.

Abstract

At genome scale, it is not yet possible to devise detailed kinetic models for metabolism because data on the biochemistry are too sparse. Predictive large-scale models for metabolism most commonly use the constraint-based framework, in which network structures constrain possible metabolic phenotypes at steady state. However, these models commonly leave many possibilities open, making them less predictive than desired. With increasingly available -omics data, it is appealing to increase the predictive power of constraint-based models (CBMs) through data integration. Many corresponding methods have been developed, but data integration is still a challenge and existing methods perform less well than expected. Here, we review main approaches for the integration of different types of -omics data into CBMs focussing on the methods' assumptions and limitations. We argue that key assumptions - often derived from single-enzyme kinetics - do not generally apply in the context of networks, thereby explaining current limitations. Emerging methods bridging CBMs and biochemical kinetics may allow for -omics data integration in a common framework to provide more accurate predictions.

摘要

在基因组范围内,由于生物化学数据过于稀疏,目前还不可能设计出详细的代谢动力学模型。代谢的预测性大规模模型最常使用基于约束的框架,其中网络结构在稳态时约束可能的代谢表型。然而,这些模型通常留下许多可能性,使它们的预测能力不如预期。随着越来越多的组学数据的出现,通过数据集成来提高基于约束的模型(CBM)的预测能力是很有吸引力的。已经开发了许多相应的方法,但数据集成仍然是一个挑战,现有的方法表现不如预期。在这里,我们回顾了将不同类型的组学数据集成到 CBM 中的主要方法,重点介绍了这些方法的假设和局限性。我们认为,关键假设——通常来自于单酶动力学——通常不适用于网络环境,从而解释了当前的局限性。将 CBM 和生化动力学联系起来的新兴方法可能允许在一个通用框架中进行组学数据集成,从而提供更准确的预测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验