Subramanian Abhishek, Zakeri Pooya, Mousa Mira, Alnaqbi Halima, Alshamsi Fatima Yousif, Bettoni Leo, Damiani Ernesto, Alsafar Habiba, Saeys Yvan, Carmeliet Peter
Laboratory of Angiogenesis & Vascular Metabolism, Center for Cancer Biology, VIB, Leuven, Belgium.
Laboratory of Angiogenesis & Vascular Metabolism, Department of Oncology, KU Leuven, Leuven, Belgium.
Comput Struct Biotechnol J. 2022 Sep 13;20:5235-5255. doi: 10.1016/j.csbj.2022.09.019. eCollection 2022.
Multi-omics technologies are being increasingly utilized in angiogenesis research. Yet, computational methods have not been widely used for angiogenic target discovery and prioritization in this field, partly because (wet-lab) vascular biologists are insufficiently familiar with computational biology tools and the opportunities they may offer. With this review, written for vascular biologists who lack expertise in computational methods, we aspire to break boundaries between both fields and to illustrate the potential of these tools for future angiogenic target discovery. We provide a comprehensive survey of currently available computational approaches that may be useful in prioritizing candidate genes, predicting associated mechanisms, and identifying their specificity to endothelial cell subtypes. We specifically highlight tools that use flexible, machine learning frameworks for large-scale data integration and gene prioritization. For each purpose-oriented category of tools, we describe underlying conceptual principles, highlight interesting applications and discuss limitations. Finally, we will discuss challenges and recommend some guidelines which can help to optimize the process of accurate target discovery.
多组学技术在血管生成研究中的应用日益广泛。然而,计算方法在该领域尚未被广泛用于血管生成靶点的发现和优先级排序,部分原因是(湿实验室)血管生物学家对计算生物学工具及其可能提供的机会不够熟悉。通过这篇为缺乏计算方法专业知识的血管生物学家撰写的综述,我们希望打破这两个领域之间的界限,并说明这些工具在未来血管生成靶点发现中的潜力。我们对目前可用的计算方法进行了全面调查,这些方法可能有助于确定候选基因的优先级、预测相关机制以及识别它们对内皮细胞亚型的特异性。我们特别强调使用灵活的机器学习框架进行大规模数据整合和基因优先级排序的工具。对于每个面向目的的工具类别,我们描述了潜在的概念原理,突出了有趣的应用并讨论了局限性。最后,我们将讨论挑战并推荐一些有助于优化准确靶点发现过程的指导方针。